
Protocols of TCP/IP
Family analysis, NAT

Computer networks
Seminar 7

ARP
Address Resolution Protocol

IP to MAC address mapping
If we need to find out the MAC address there is
ARP request generated (broadcast). It contains
the host IP address we need the MAC address of.
The hosts with this IP address will answer with
their MAC address (ARP replay).
The source host of ARP request will save the result
into ARP cache.

(station local cache keeps IP-MAC mapping)
Following pair is also added to the request:
< source IP, source MAC >, every computer
watches all ARP broadcasts and updates its ARP
cache

Using the command arp

To see MAC-IP mapping table (Linux, Win)
Parameters:

-a all records in arp cache
-s <IP> <MAC> to insert static record manually
-d <IP> to delete the record from arp cache

Parameters in Linux:
-v detailed output
-n numerical form outputs (without DNS)

Example (Windows):
Rozhraní: 158.196.64.66 --- 0x10004
internetová adresa fyzická adresa typ
158.196.64.1 00-0a-f3-6e-bc-0a dynamická
158.196.64.137 00-0c-f1-3c-54-87 dynamická

IP header

ICMP messages

„Classic“ messages
Echo request , echo reply
Destination unreachable

(network, host, port, protocol unreachable,
forbidden but neccessary fragmentation)
+ administratively prohibited

Time exceeded (TTL=0 or time for re-fragmentation expired)
Redirect
Parameter problem

Newer (but not always supported) messages
Source quench – request of target station to source to
decrease the speed of generating messages (buffers overrun)
Address mask request, Address mask reply – finding
interface subnet mask
Router solicitation, Router advertisement

Ports

Together with IP address identify
particular process (service) on device in
Internet
16bit (0-65535), separately for TCP and
UDP

0-1023: well-known
>1024 (4096) – registered ports, usually
assigning of free ports by operating system

Always target and source port

UDP header

TCP header

Establishing TCP connection

TCP connection – data flow
control

Using the command netstat

List of active connections (Linux, Windows)
Parameters:

-a to see all connections and listening servers
-r to see routing table
-v detailed outputs
-n list of connection in numerical form (without DNS)

Parameters in Windows:
-p <protocol> just specified protocol (tcp, udp, …)
-b name of program which is using the socket

Parameters in Linux:
-u | -t | -w just given protocol (tcp, udp, raw, …)
-p PID and name of program using the
socket

NAT

Network address translation (translator)
Dynamic, static – IP→IP
Static translation

Translation table configured statically
Dynamic translation

Translation table is being created during
operation
Addresses are borrowed from address pool

Typical example of translation
From inside private address to outside public
address

Example of translation table
using ports

Source IP Source port Source IP S. port
192.168.1.4 2345 158.196.135.2 2345
192.168.1.5 4589 158.196.135.2 4589
192.168.1.4 5678 158.196.135.2 5678
192.168.1.6 5678 158.196.135.2 5679

NAT in IOS

Specifying inside and outside interface
Inside: (config-if)# ip nat inside
Outside: (config-if)# ip nat outside

Defining the addresses WHICH will be translated
(typically private addresses)

Defining the addresses TO WHICH it will be translated
(typically public addresses)

Putting it all together

Static NAT

Address translation:
(config)#ip nat inside source static
<local_IP> <global_IP>

Address translation (using specified L4
port):
(config)#ip nat inside source static
{tcp|udp} <local_IP> <local_port>
<global_IP> <global_port>

Dynamic NAT – Defining the
addresses

Defining address pool
(it means TO WHAT I am translating):
(config)# ip nat pool <NAME> <start_IP>
<stop_IP> netmask <mask>

Ex.: ip nat pool MyNATPool 20.0.0.1
20.0.0.100 netmask 255.255.255.0

Specifing addresses to be translated – using
ACL (it means WHAT is to be translated):
(config)#access-list <ACL number 1-99>
permit <IP> <wildcard>

Ex.: access-list 1 permit 10.0.0.0
0.0.0.255

Dynamic NAT

Translation to addresses from pool:
(config)# ip nat inside source list
<ACL number> pool <NAME> [overload]

Ex.: ip nat inside source list 1 pool MyNATPool
overload

Translation to the address of outside
interface:
(config)# ip nat inside source list
<ACL number> interface <interface name>
[overload]

Ex.: ip nat inside source list 1 interface fa0/1
overload

NAT – seeing translation
table

To see translation table
#sh ip nat translations

To clear translation table:
#clear ip nat translations *

Timeout of records in the table:
(config)# ip nat translations timeout
<seconds>
(config)# ip nat translations icmp-timeout
<seconds>

NAD debugging
#debug ip nat

NAT – assignment

Interconnect 3 routers in a line (chain)
Connect PC to each router
Router in the middle simulates the
network with the public addresses (all its
interfaces use public addresses)
PCs connected to the side routers are in
private network and side routers realize
the NAT

	Snímek 1
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20

