
The Arithmetic Operators

The arithmetic operators refer to the standard mathematical
operators: addition, subtraction, multiplication, division and modulus.

Op. Use Description
+ x + y adds x and y
- x - y subtracts y from x
* x * y multiplies x by y
/ x / y divides x by y
% x % y computes the reminder of dividing x by y

Examples:

i + 1 (x * y) % 5 b * b - 4 * a * c

Some remarks for integer arithmetic operators:
The result contains only the low-order bits of the mathematical
result in case of the arithmetic overflow.

Unary Operators

Java's unary operators can use either prefix or postfix notation.

Operator Use Description
+ +op promotes op to int if it is a byte, short or

char
- -op arithmetically negates op
++ ++op increments op by 1; evaluates to value of op

before the incrementation
++ op++ increments op by 1; evaluates to value of op

after the incrementation
-- --op decrements op by 1; evaluates to value of op

before the decrementation
-- op-- decrements op by 1; evaluates to value of op

after the decrementation

Examples:

-x +(x * y) i++ a[j--]++

Examples of use of ++ and --

Code:

int x = 5; int y;
y = x++;

Results:

x = 6 y = 5

Code:

int x = 5; int y = 11; int z;
z = --x;
x = 2 * (y++ + 3) - x;

Results:

x = 24 y = 12 z = 4

Relational Operators

Relational operators generate a boolean result.

Operator Use Returns true if
> op1 > op2 op1 is greater than op2
>= op1 >= op2 op1 is greater than or equal to op2
< op1 < op2 op1 is less than op2
<= op1 <= op2 op1 is less than or equal to op2
== op1 == op2 op1 and op2 are equal
!= op1 != op2 op1 and op2 are not equal

Examples:

i + 1 < n x == h[2*i+1] a != b

Conditional Operators

Relational operators are often used with conditional operators.

Operator Use Returns true if
&& op1 && op2 op1 and op2 are both true, conditionally eval-

uates op2
|| op1 || op2 either op1 or op2 is both true, conditionally

evaluates op2
! !op1 op1 is false

Examples:

!(n >= 0)
(i < n) && (a[i++] > 0)

If (i>=n) then the value of i is not changed. If (i<n) then i is
incremented by 1.

Bitwise Operators

The bitwise operators allow to manipulate individual bits in an integral
primitive data type. Bitwise operators perform boolean algebra on the
corresponding bits in the two arguments to produce the result.

Operator Use Operation
& op1 & op2 bitwise and
| op1 | op2 bitwise or
^ op1 ^ op2 bitwise xor
~ ~op bitwise complement

Examples:

0x36 & 0x0F 0x06 (00110110 & 00001111)
0x36 | 0x80 0xB6 (00110110 | 10000000)
0x36 ^ 0x07 0x31 (00110110 ^ 00000111)

Shift Operators

Shift operator shifts the bits of the left-hand operand over by the
number of positions indicated by the right-hand operand. The shift
occurs in the direction indicated by the operator itself.

Operator Use Operation
>> op1 >> op2 shift bits of op1 right by distance op2
<< op1 << op2 shift bits of op1 left by distance op2
>>> op1 >>> op2 shift bits of op1 right by distance op2

0x36 << 2 0xD8 (00110110 -> 11011000)

-1 -1 (decimal)
-1 >> 1 -1 (decimal)
-1 >>> 1 2147483647 (decimal)

-1 11111111111111111111111111111111 (binary)
-1 >> 1 11111111111111111111111111111111 (binary)
-1 >>> 1 01111111111111111111111111111111 (binary)

Ternary Operator (?:)

The ternary operator allows to avaluate expresseion in two diferrent
ways depending on some condition.

The expression is of the form:

cond ? expr1 : expr2

The boolean condition cond is evaluated first. If it is true then expr1
is evaluated and the resulting value is the value of the whole
expression. When cond evaluates to false then expr2 is evaluated
and the resulting value is the value of the whole expression.

Example:

(n > 1) ? (a + b) : (a * b)

When (n>1) then the result is (a+b), otherwise the result is (a*b).

Assignment Operators

The basic form of assignment is

expr1 = expr2

Evaluation:

1. The left hand side (expr1) is evaluated. It must by an lvalue -
a variable, an element of an array, a field.

2. The right hand side (expr2) is evaluated.

3. The value of the right hand side is stored into the place denoted
by the left hand side.

4. The value of the whole expression is the value of the right hand
side.

Examples of assignment expressions:

x = (z + y) * a[i]
a[i++] = x + y

Assignment Operators (cont.)

Examples of assignment statements:

x = (z + y) * a[i];
a[i++] = x + y;

Note that an assignment expression is not the same thing as an
assignment statement.

The following construction is legal, but the resulting code is not very
clear:

int y, x;
x = 3 * (y = 2) + 1;

The results are:

x = 7 y = 2

Compound Assignment Operators

There other assignment operators of the form op= where op is some
binary operator:

*= /= %= += -= <<= >>= &= ^= |=

The meaning of

expr1 op= expr2

is the same as

expr1 = expr1 op expr2

except that expr1 is evaluated only once.

For example, the statement x *= 6;
has the same effect as x = x * 6;

Notice that a[i++] += 3;
is not the same as a[i++] = a[i++] + 3;

Cast Expression

The following assinment between variables of different types is
possible:

byte b; int i;
.
.
.

i = b;

The following assignment is illegal:

b = i;

It can be assigned using the cast of the form

(type)expr1

which transforms the value of expr1 to the type type as in the
following code:

b = (byte)i;

Priority of Operators

Operators ordered by priority (from lowest to highest):

Pr. Operators
1. ()
2. [], postfix ++ and --
3. unary +, unary -, ~, !, cast, prefix ++ and --
4. *, /, %
5. +, -
6. <<, >>, >>>
7. <, >, <=, >=, instanceof
8. ==, !=
9. &

10. ^
11. |
12. &&
13. ||
14. ?:
15. =, *=, /=, %=, +=, -=, <<=, >>=, >>>=, &=, ^=, |=

Associativity of Operators

Most binary operators are associative to the left.

For example

a + b + c

has the same meaning as

(a + b) + c

An exception are the asignment operators that are associative to the
right.

For example

a = b = c

has the same meaning as

a = (b = c)

Statements
One of the basic types of statements is an assignment statement:

a = b + c;

Assignment statement must end with semicolon (;).

Some other types of expressions can be also used as statements:

i++;
sum(a, b);

A declation can be also used as a statement:

int i;
double x, y, z;

A declaration can be combined with an assignment of an initial value:

int i = 4;
double x = 46.3, y, z = i * 2.0;

Blocks

Blocks are sequences of statements enclosed between { and }.

Example:

{
a = 3;
int b = a + 1;
a = b * 2;

}

The scope of a declation of a local variable is from the place where it
is declared to the end of the enclosing block.

A block can be used in any place where a single statement can be
used.

Branching Statement

The if-else statement is probably the most basic way to control
program flow.

if (value > value2) {
result = 1;

}
else if (value1 < value2) {

result = -1;
}
else {

result = 0;
}

Similarly we can use:

if (value > value2) result = 1;
else if (value < value2) result = -1;
else result = 0;

Iteration Statements
Java provides three iteration statements. The statements repeat their
bodies until controlling expression evaluates to false.

while

int i = 0;
while (++i < 2)

System.out.println("i: " + i);

do-while

int i = 0;
do {

System.out.println("i: " + i);
} while (++i < 2)

for

int powerOfTwo = 1;
for (int i = 0; i < 16; i++)

powerOfTwo <<= 1;

Driving Iteration Statements

Inside the body of any of the iteration statements flow of the loop can
be controlled using break and continue statements. break quits the
loop without executing the rest of the statements in the loop.
continue stops the execution of the current iteration and goes back
to the beginning of the loop to begin the next iteration.

int i = 0;
while (true) {

if (i > 20)
break;

if (i++ % 7 == 0)
continue;

i += 2;
}

Driving Iteration Statements

The break and continue normally only alter the closest looping
structures. If there are nested statements, labeled break and
continue can be used to alter outer looping structures.

int i = 0;
outer:
while (true) {

while (true) {
i++;
if (i == 1)

break;
if (i == 4)

break outer;
}
while (true) {

i++;
if (i == 2)

continue;
if (i == 3)

continue outer;
}

}

The switch Statement
The switch statement is used to test an integral expression against
one or more possible cases.

char ch;
boolean whitespace;

switch (ch) {
case ' ':
case '\n':
case '\t':
case '\r':

whitespace = true;
break;

default:
whitespace = false;

}

	The Arithmetic Operators
	Unary Operators
	Examples of use of 	exttt {++} and 	exttt {--}
	Relational Operators
	Conditional Operators
	Bitwise Operators
	Shift Operators
	Ternary Operator (?:)
	Assignment Operators
	Assignment Operators (cont.)
	Compound Assignment Operators
	Cast Expression
	Priority of Operators
	Associativity of Operators
	Statements
	Blocks
	Branching Statement
	Iteration Statements
	Driving Iteration Statements
	Driving Iteration Statements
	The lstinline {switch} Statement

