Object-Oriented Modeling

Object-oriented modeling is a method that models the characteristics
of real or abstract objects from application domain using classes and
objects.

= Objects

Software objects are modeled after real-world objects in that
they too have state and behavior.

= A software object maintains its state in one or more
variables (attributes).

= A software object implements its behavior with methods
that manipulate these variables.
= Messages

Software objects interact and communicate with each other by
sending messages. When object A wants object B to perform one
of B's methods, object A sends a message to object B.

Examples of Objects

Objects in a program correspond to objects from the application
domain.

Information system of a bank: accounts, transactions, clients, other
banks

Chess playing program: chess pieces, a chessboard, positions,
moves, games, strategies

Action game: monsters, weapons, walls, doors, flying bullets, a
score counter

Drawing application: lines, rectangles, circles, arrows, text fields,
line styles, line colors

GUI toolkit: windows, buttons, menus, menu items, icons

! Messages

Sometimes, the receiving object needs more information to know
exactly what to do. This information is passed along with the
message as parameters.

Message sending requires the following information:
= the object to which the message is addressed,
= the name of the method to perform,

= any parameters needed by the method.

The sending of a message can have any of the following effects:
= The state of the receiving object is changed.

= Some other actions are performed (including sending another
messages to some objects).

= Some information is returned to the sending object.

Class

In the real world, many objects of the same kind exist. Using
object-oriented terminology, the objects are instances of a class.

objects of a certain kind.

Graphical representation of a class:

| — class name

Fraction =

numerator: int
denominator: int

[attributes

add(Fraction f)
mul(Fraction f)
normalize()

methods

A class is prototype that defines variables and methods common to all

Instances

Objects are instances of the given class. Each object has its own
identity.

Fraction

a: Fraction w

numerator: int

) . numerator = 2
denominator: int

denominator = 3

add(Fraction f)

mul(Fraction f)
normalize() \

b: Fraction

numerator = 1 J

c: Fraction

L numerator = -6

denominator = 2

denominator = 4

— |
T

Java Objects

An instance of a class can be created using new operator. It allocates
required space on the heap, provides initialization and returns
reference to the newly created instance.

Fraction a = new Fraction();

The attributes of a object can be accessed using the reference to the
object and the dot (.).

a.numerator = 2;
a.denominator = 3;

The methods of an object are accessed similarly.

Fraction b = new Fraction();
b.numerator = -6;
b.denominator = 4;

a.mul(b);

Java Class

Java defines classes using the class keyword. Definition of a class

may contain declarations of variables, definitions of methods or even
nested classes.

The order of class members is not important.

class Fraction

{
int numerator;
int denominator;
void mul(Fraction f)
{
numerator *= f.numerator;
denominator *= f.denominator;
}
}
Note: Standard convention is that class names start with an upper-case
letter and class member names (attributes and methods) start with a
lower-case letter.

The references are just pointers to objects in memory. So after the
following assignment the both a and c point to the same object.

Fraction c = a;

a| F——=

¢ [=]

There is a special reference value null that denotes reference that
does not point to any object.

Fraction d = null;

It is an error to access attributes or methods using a reference with
the null value.

! How To Destroy Objects? ! The this Keyword

There is no need to destroy objects explicitly in Java, since it uses :}'he ;h"s kel}""(’jol';d produces the reference to the object the method
automatic memory management - garbage collector. el sl (el el
Whenever there is no reference to an object, the object can be An instance

destroyed and the memory used by this object is freed.
The garbage collector takes into account circular dependencies.

this

| 1

Examples (it is possible to omit this in most cases):

Fraction a, b;

b
this.numerator = 3; numerator = 3;
this.denominator = 2; denominator = 2;
this.add(a); add(a);

b.mul(this);

! Overloading of Methods ! Encapsulation

The methods in Java can be overloaded. This means that there can be Some attributes and methods can be marked as private. Such
more methods with the same name in a class. The methods must attributes and methods can be accessed only from methods in the
differ in the number and types of their parameters. class where they are defined. An attempt to access them from
The method that is actually called is chosen depending on the number methods in other classes produces a compile-time error.
and types of parameters. Attributes and methods can be also marked as pub1-ic. Such
The return types of overloaded methods need not be all the same. attributes and methods can be accessed from any other class.
class Fraction { §1ass Fraction
private int numerator;
void addCint x) { ... } private int denominator;
void add(int num, int den) { ... } public void set(int num, int den) { ... }
void add(Fraction f) { ... } public int getNumerator() { ... }
public int getDenominator() { ... }

Encapsulation (cont.)

Encapsulation (also information hiding) is the separation of the
external aspects of an object (accessible from other objects) from the
internal implementation details (which are hidden from other objects).

The implementation of an object can be changed without affecting the
other parts of an application that use it.

In a purely object-oriented design the attributes of an object are
always private and the only way to access them is through the
methods that manipulate them.

The use of keywords private and publ-ic allows to promote
encapsulation.

Note: If none of keywords private and public is used then the member
can be accessed from other classes. However, there are differences

between using and not using the keyword public. They will be discussed
later. There is also a keyword protected that will be discussed later too.

! Constructors

A more elaborate initialization of an object can be implemented using
constructors.

Constructor resemble methods, but there are some differences:
= The name of a class must be used as a name of a constructor.
= Constructors can not return values.

= A constructor can be invoked only in the time of the creation of
an object (using new).

class Fraction {

Fraction(int numerator, int denominator) {
this.numerator = numerator;
this.denominator = denominator;

Fraction a = new Fraction(3, 5);
a.add(new Fraction(l, 3));

Initialization of an Object

After the creation of a new object (using new), all its attributes are set
to zero:

= numeric values (int, Tong, char, float, ...) are setto 0
= boolean values are set to false
= references (to objects and to arrays) are set to null

It is possible to set attributes to some specified values using explicit
initialization:

class Fraction
{
int numerator

= 0;
int denominator =

1;

Constructors (cont.)

Some additional remarks concerning constructors follow:

= Constructors may be overloaded, similarly as methods.
= Constructors can be marked as public, protected and
private, similarly as methods.

= When no constructor is defined then the default constructor that
does nothing is defined automatically, as if the following empty
constructor would be put in the code:

class Fraction

{
Fraction() { }

}

= If there is explicitly defined at least one constructor, the default
empty constructor is not defined automatically.

! Constructors (cont.)

Constructors can call other constructors. The keyword this can be
used for this purpose. An invocation of another constructor can be
used only as the first statement of a calling constructor's body.

class Fraction {

Fraction() {
this(0);
}

Fraction(int x) {
this(x, 1);
}

Fraction(int num, int den) {
numerator = num;
denominator = den;

Static Members (cont.)

= Instance Variables and Methods
They can be accessed only using a reference to some object.

obj.variable, obj.method()

= Class (Static) Variables and Methods

The keyword stat-ic is used to denote them. There is always
exactly one copy of a static variable shared by all instances of
the given class.

static int count;
static int getCount() {...}
static void main(String[] args) {...}

Class member are usually accessed using the class name.
Test.count = 0;
int c = Test.getCount();

When they are accessed inside a given class, the class name can
be omitted.

Static Members

Variables and methods defined by a class can be of two types:
instance and class (static). Class members are distinguished from
instance ones by the static keyword.

= Instance Members

= Instance Variable
Any item of data that is associated with a particular object.
Each instance of a class has its own copy of the instance
variables defined in the class.

= Instance Method
Any method that is invoked with respect to an instance of
a class.

= Class Members

= Class Variable
A data item associated with a particular class as a whole, not
with particular instances of the class.

= Class Method
A method that is invoked without reference to a particular
object. Class methods affect the class as a whole, not
a particular instance of the class.

Static Members (cont.)

An example of use of static members:

class Test {

private static int count = 0;
private int x;

public static int getCount() {
return count;

}

public Test(int x) {
this.x = x;
count++;

3

public int getValue(Q {
return Xx;
}

Static Members (cont.)

There is exactly one copy of the static variable count in the memory.

Each instance of the class Test has its own copy of the instance
variable x.

class Test

X =5
count
x = 8
X =3

Static Initializers (cont.)

class StaticInitializerExample {

static 1int x;

static {
X = 3;
System.out.println(x);
}
static int y = 4;
static {
y =1;
System.out.println(y);
}
}
produces the following output:
3

1

Static Initializers

The static members can be initialized using static initializer of the
form

static { ... }

The code may contain more than one static initializer. They are
evaluated together with initializations of static variables in a textual
order as they appear in a source file.

Static initializers are executed only once when the class is loaded into
memory.

	Object-Oriented Modeling
	Messages
	Examples of Objects
	Class
	Instances
	Java Class
	Java Objects
	References
	How To Destroy Objects?
	The lstinline {this} Keyword
	Overloading of Methods
	Encapsulation
	Encapsulation (cont.)
	Initialization of an Object
	Constructors
	Constructors (cont.)
	Constructors (cont.)
	Static Members
	Static Members (cont.)
	Static Members (cont.)
	Static Members (cont.)
	Static Initializers
	Static Initializers (cont.)

