
Inheritance

Object-oriented systems allow new classes to be defined in terms of a
previously defined class.

All variables and methods of the previously defined class, called
superclass, are inherited by subclasses. Subclasses can add some
new variables and methods.
There is a hierarchical relationship between a superclass and its
subclasses.

PSfrag replacements

Vehicle

Pick-up Truck Tractor



Inheritance (cont.)

Class Point represents a point in a plane.

Subclass ColorPoint adds information about color. It inherits
attributes x and y and the method move() from its superclass Point.

PSfrag replacements

Point

ColorPoint

x,y: int

color: int

move(dx, dy)

setColor(c)



Inheritance (cont.)

Java supports inheritance through the extends keyword. Only single
inheritance is supported, i.e. a subclass can be inherited from exactly
one superclass.

class Point {
private int x, y;

...

public void move(int dx, int dy) {
x += dx; y += dy;

}
}

class ColorPoint extends Point {
private int color;

public void setColor(int c) {
color = c;

}
}



Hierarchy of Classes

Inheritance gives rise to a whole hierarchy of classes, because other
subclasses can be inherited from subclasses of a class. Every class is
a subclass of the special class Object.

PSfrag replacements

Object

String FractionPoint

ColorPoint



Use of Subclasses

Subclasses can be used as any other classes. Attributes and methods
can be accessed as usual:

ColorPoint p = new ColorPoint();
p.setColor(3);
p.x = 45;
p.move(10, 20);

Reference to an instance of a class can also point to an instance of its
subclass. For example a reference to the class Point can point to an
instance of its subclass ColorPoint:

ColorPoint p = new ColorPoint();
Point q = p;
q.move(60, -40);
Point r = new ColorPoint();



Use of Subclasses (cont.)

However only attributes and methods declared in the class can be
accessed using reference of the given type. Attributes and methods
declared in its subclasses can not be accessed using this reference.

Point r = new ColorPoint();
r.setColor(10); // Compile error! Method setColor()

// is not defined in the class Point.

An instance of a subclass of a class can be assigned to a reference to
the given class. On the other hand, it is a compile-time error to
assign to a reference to some class an expression of type reference to
its superclass:

ColorPoint c = new ColorPoint();
Point q = c; // O.K.
ColorPoint t = q; // Compile error!

Note: Every instance of ColorPoint is also an instance of Point. There
can be instances of Point that are not instances of ColorPoint.



Cast Operator

It is possible to use cast operator to convert a reference to some class
to a reference to its subclass:

Point q = new ColorPoint();
ColorPoint t = (ColorPoint)q; // Both q and t point to

// the same object.
t.setColor(4); // O.K.
q.setColor(4); // Compile error!

The following usage is also possible:

((ColorPoint)q).setColor(4);

When the instance is not an instance of the class used in the cast
operator, a run-time error occurs (an exception is thrown).

Point q = new Point();
ColorPoint t = (ColorPoint)q; // Run-time error occurs.



The instanceof Operator

The instanceof operator determines whether a given object is an
instance of particular class or type.

The syntax is:

expr instanceof type

where expr represents an expression that evaluates to a reference
and type is a name of a class.

The result of the instanceof operator is true if the value of expr is
not null and could be cast to the type without raising an exception.
Otherwise the result is false.

Point p;
...

if (p instanceof ColorPoint) {
((ColorPoint)p).setColor(5);

}

Note: If it is clear at compile-time that the value of the expression can not
be an instance of the given class, a compile error is produced.



The final Classes

When a class is marked as final no subclasses can be inherited from
this class.
In the following example, we can not declare the class ColorPoint as
a subclass of the class Point, since the class Point is final.

final class Point
{

...
}

class ColorPoint extends Point // Compile error!
{

...
}



Polymorphism

A subclass can override methods of its superclass, i.e., it can provide
its own implementation of these methods.

class Point {
...

public void print() {
System.out.print("(" + x + "," + y + ")");

}
}

class ColorPoint extends Point {
...

public void print() {
System.out.print("(" + x + "," + y + ", color=" +

color + ")");

}
}



Polymorphism (cont.)

If an overridden method is called, the method in the subclass is
always used. The overridden method in the superclass is not
accessible from other objects.

ColorPoint c = new ColorPoint();
Point p = c;
c.print(); // The method print() defined in the class
p.print(); // ColorPoint is called in both cases.

The code that calls overridden methods does not need to be aware of
different implementations of the methods in different subclasses.

Point[] points = new Point[10];
points[0] = new ColorPoint();
points[1] = new Point();

...
for (int i = 0; i < points.length; i++) {

points[i].print();
}



The super Keyword

The super keyword can be used to access members of a class
inherited by the class in which it appears.

In particular it is the only way to access overridden methods.

class Point {
...

public void print() {
System.out.print("(" + x + "," + y + ")");

}
}

class ColorPoint extends Point {
...

public void print() {
super.print(); // calls the method print() in

// the class Point
System.out.print(", color=" + color);

}
}



The final Methods
A method can be marked as final. Such methods can not be
overridden in subclasses.

class Point {
...

public final void print() { // Marked as 'final'.
System.out.print("(" + x + "," + y + ")");

}
}

class ColorPoint extends Point {
...

public void print() { // Compile error! Can not override
// final method.

System.out.print("(" + x + "," + y + ", color=" +
color + ")");

}
}



Inheritance and Constructors

Constructors are not inherited. The subclass must define its own
constructors.
The constructors in the subclass can call a constructor of the
superclass using the keyword super.

class Point {
public Point(int x, int y) {

this.x = x; this.y = y;
}

...
}

class ColorPoint extends Point {
public ColorPoint(int x, int y, int c) {

super(x, y); // The constructor in the class
// Point is called.

color = c;
}

...
}



Inheritance and Constructors (cont.)

When no constructor of the superclass is called explicitly in the
constructors in the subclass, the constructor with no parameters is
used, as if the following construction would be put at the beginning of
the constructor:

{
super();

...
}

It is an compile-time error if the superclass does not define (either
implicitly or explicitly) the constructor with no parameters in this case.



Abstract Classes

An abstract class is an incomplete description of something; a set of
operations and attributes that, in themselves, do not fully describe an
object.

Abstract classes are used as common superclasses of some classes
and they contain common attributes and methods of these classes.

Abstract classes can not be instantiated, but their non-abstract
subclasses can.

PSfrag replacements

Figure

CirclePolygonLine

abstract class



Abstract Classes (cont.)

Abstract classes are declared with the keyword abstract.

abstract class Figure { // an abstract class
...

}

class Line extends Figure { // a non-abstract class
...

}

It is possible to use references to instances of an abstract class.

Figure a = new Line();
a.move(10, 20);

It is not possible to create instances of an abstract class.

Figure b = new Figure(); // Compile error!



Abstract Methods
Abstract classes can contain abstract methods. Such methods are
marked with the keyword abstract and have only header, their body
is replaced with a semicolon (;).

abstract class Figure {
...

abstract void draw(); // abstract method
}

Every abstract method must be implemented in non-abstract
subclasses.

class Line extends Figure {
...

void draw() { // implementation of the abstract method
... // <- draws the line

}
}

Note: Every class containing a non-implemented abstract method (either
directly or inherited) must be declared as an abstract class.



Abstract Methods (cont.)

Abstract methods are called as any other methods - the
implementation in the corresponding subclass is called.

Figure[] figures = new Figure[100];
figures[0] = new Line();
figures[1] = new Circle();
figures[2] = new Polygon();

...
for (int i = 0; i < figures.length; i++) {

figures[i].draw(); // The method draw() of the
// corresponding class is called.

}



Interfaces

An interface is a named collection of method definitions (without
implementations). An interface can also declare constants.

A definition of an interface resembles a definition of a class, but the
keyword interface is used instead of the keyword class.

interface Drawable
{

void draw(); // methods
void highlight(int mode);

int HM_DARK = 0; // constants for
int HM_LIGHT = 1; // highlight mode

}

The definitions of methods must be the same as definitions of
abstract methods except that the keyword abstract is not used.



Interfaces (cont.)

We say a class implements an interface if it provides implementations
of methods in the interface (in the same way as it implements abstract
methods).
The used syntax is illustrated in the following example.

class Line implements Drawable
{

...
public void draw() {

... // a method that actually draws the line
}

public void highlight(int mode) {
... // a method that actually highlights

// the line using the specified mode
}

}



Interfaces (cont.)

A references that point to any object implementing the given interface
can be used in the same way as references pointing to class instances.

Line l = new Line();
...

Drawable d = l;
d.draw(); // O.K.
d.highlight(Drawable.HM_DARK); // O.K.
d.move(10, 20); // Compile error. The method

// move() is not deklared in
// the interface Drawable.

Only methods declared in the interface can be called using a reference
type corresponding to this interface.



Interfaces (cont.)

An interface defines a protocol of behavior that can be
implemented by any class anywhere in the class hierarchy.

An interface declares a set of methods but does not implement
them.

A class that implements the interface agrees to implement all
the methods defined in the interface, thereby agreeing to certain
behavior.

There is a hierarchy of interfaces similar to hierarchy of classes.
We talk about superinterfaces and subinterfaces.

interface DrawableFull extends Drawable
{

void fill(int color);
}



Interfaces (cont.)

A class can implement more than one interface. Names of
multiple interfaces are separated by comma (,).

class Polygon extends Figure implements
Drawable, Rotating {

...

Methods declared in an interface are implicitly public and
abstract. It is not possible to change this.

Attributes declared in an interface are implicitly public, static
and final, i.e., they represent constants. It is not possible to
change this.

When a class implements an interface, it is essentially signing a
contract. Either the class must implement all the methods
declared in the interface and its superinterfaces, or the class
must be declared abstract.



Interfaces (cont.)

The most significant differences between interfaces and abstract
classes:

An interface cannot implement any methods, whereas an
abstract class can.

An interface cannot declare any static methods, whereas an
abstract class can.

An interface cannot declare instance variables, whereas an
abstract class can.

An interface cannot declare non-final static attributes, whereas
an abstract class can.

A class can implement many interfaces but can have only one
superclass.

An interface is not part of the class hierarchy - unrelated classes
can implement the same interface.



The final Attributes

Constant values can be declared using the keyword final.

final int NUMBER = 10;

We can assign a value to final attributes and (local) variables only in
their declarations or in constructors. An attempt to assign them a
value in normal methods results in a compile-time error.

NUMBER = 5; // Compile error!

A final attribute is usually declared as static, since it is not
necessary to have a copy of the same value in all instances, and one
common copy is sufficient.

static final int NUMBER = 10;

Note: Names of constant values are by convention formed from
upper-case letters and underscores (_).



The final Attributes (cont.)

One common usage of final attributes is to use them for
representation of possible values from some finite set of values -
enumeration of these values. To each possible element of the set we
assign some arbitrary integer value. In program we always use the
assigned symbolic names instead of integer values.

In this case names of attributes representing values from the set share
a common prefix.

For example in a chess-playing program we can represent different
pieces using the following declarations.

// chess pieces
public static final int P_NONE = 0,

P_KING = 1,
P_QUEEN = 2,
P_BISHOP = 3,
P_KNIGHT = 4,
P_ROOK = 5,
P_PAWN = 6;


	Inheritance
	Inheritance (cont.)
	Inheritance (cont.)
	Hierarchy of Classes
	Use of Subclasses
	Use of Subclasses (cont.)
	Cast Operator
	The lstinline {instanceof} Operator
	The lstinline {final} Classes
	Polymorphism
	Polymorphism (cont.)
	The lstinline {super} Keyword
	The lstinline {final} Methods
	Inheritance and Constructors
	Inheritance and Constructors (cont.)
	Abstract Classes
	Abstract Classes (cont.)
	Abstract Methods
	Abstract Methods (cont.)
	Interfaces
	Interfaces (cont.)
	Interfaces (cont.)
	Interfaces (cont.)
	Interfaces (cont.)
	Interfaces (cont.)
	The lstinline {final} Attributes
	The lstinline {final} Attributes (cont.)

