
Exceptions

The Java programming language provides a mechanism known as
exceptions to help programs report and handle errors:

When an error occurs, the program throws an exception.

The normal flow of the program is interrupted and the runtime
environment attempts to find an exception handler, a block of
code that can handle a particular type of error.

Exception - an event that occurs during the execution of a program
that disrupts the normal flow of instructions.
An object containing an information about the event is also
called an exception.

Exceptions - Example

An example of usage of exceptions:

public static void main(String[] args) {
try {

int c = Integer.parseInt(args[0]);
while (c-- > 0) System.out.println(args[1]);

}
catch (ArrayIndexOutOfBoundsException e) {

System.err.println("Missing argument");
}
catch (NumberFormatException e) {

System.err.println("\"" + args[0] +
"\" isn't an integer");

}
}

Usage: java Example 3 xyz

Exceptions - Motivation

Let us consider a method that reads an entire file into memory. In
pseudo-code it looks like this:

readFile {
open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

}

What happens if the file can't be opened?

What happens if the length of the file can't be determined?

What happens if enough memory can't be allocated?

What happens if the read fails?

What happens if the file can't be closed?

Exceptions - Motivation (cont.)

errorCodeType readFile {
initialize errorCode = 0;
open the file;
if (theFileIsOpen) {

determine the length of the file;
if (gotTheFileLength) {

allocate that much memory;
if (gotEnoughMemory) {

read the file into memory;
if (readFailed) {

errorCode = -1;
}

} else {
errorCode = -2;

}
} else {

errorCode = -3;
}

. . .



Exceptions - Motivation (cont.)

. . .
close the file;
if (theFileDidntClose && errorCode == 0) {

errorCode = -4;
} else {

errorCode = errorCode and -4;
}

} else {
errorCode = -5;

}
return errorCode;

}

Exceptions - Motivation (cont.)

readFile {
try {

open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

} catch (fileOpenFailed) {
doSomething;

} catch (sizeDeterminationFailed) {
doSomething;

} catch (memoryAllocationFailed) {
doSomething;

} catch (readFailed) {
doSomething;

} catch (fileCloseFailed) {
doSomething;

}
}

Exception Objects

When an error occurs in Java:

An exception object is created, it contains information about the
exception (its type, the state of the program when the error
occurred, ...).

Normal flow of instructions is disrupted.

The runtime system finds some code to handle the error.

An exception object is always an instance of some subclass of the
class java.lang.Throwable. There are many standard exception
classes and it is possible to define own exception classes.

Creating an exception and handing it to the runtime system is called
throwing an exception.

The code that handles the exception is called an exception handler.
The exception handler is said to catch the exception.

Which exception handler is chosen depends on the type of the
exception object.

Catching Exceptions

There are three main components of a code that catches exceptions:

the try block

the catch blocks

the finally block

The syntax is:

try {
. . .

} catch (. . .) {
. . .

} catch (. . .) {
. . .

} finally {
. . .

}

A try block must be accompanied by at least one catch block or one
finally block.



The try Block

In general a try block looks like this:

try {
. . . // Java statements

}

A try block is said to govern the statements enclosed within it and
defines the scope of any exception handlers.

If an exception occurs within the try statement, that exception is
handled by the appropriate exception handler associated with this try
statement.

There can be any number of the catch blocks, but at most one
finally block.

The catch Block(s)

The general form of a catch block is:

catch (SomeThrowableObject variableName) {
. . . // Java statements

}

A class SomeThrowableObject is a subclass of java.lang.Throwable.
It declares the type of exceptions the handler can handle.

The variable variableName is the name by which the handler can
refer to the exception.

This is a declaration of a local variable variableName. The scope of
this variable is the body of the catch block.

The variable variableName can be used as any other local variable:

variableName.getMessage();

Note: The conventional name used for these types of variables is e.

The catch Block(s) (cont.)

The catch block contains a series of statements that are executed
when the exception handler is invoked:

If no exception occurs in the try block, all its catch blocks are
skipped and the execution continues after them.

If an exception of type T occurs in the try block and there is a
catch block handling exceptions of type T (or its superclass),
then this block is executed.
If there is more than one handler that handles exceptions of
type T then the first one matching handler is used.

If there is no such handler, the runtime system looks for some
other enclosing try statement and its handlers.

Note: Exceptions can be thrown everywhere, even inside the catch
blocks.

The catch Block(s) (cont.)

The typical use of exception handlers:

try {
. . .

} catch (ArithmeticException e) {
System.out.println("Caught ArithmeticException: " +

e.getMessage());
} catch (IOException e) {

System.out.println("Caught IOException: " +
e.getMessage());

}



The finally Block

The finally block provides a mechanism that allows to clean up the
state of a method regardless of what happens within the try block.

Statements in the finally block are performed after:

the try block exited normally,

an exception occurred in the try block and was caught by some
exception handler,

an exception occurred in the try block and was not caught.

try {
. . . // opens a file and writes to it

} finally {
if (file != null) {

file.close();
}

}

Exceptions and Methods

A method need not catch all exceptions, it can also throw exceptions
to its caller.
If an exception of type T can occur in a method and the method does
not catch the exception of type T, then we must specify that the
method can throw an exception of type T.

To specify this, we add a throws clause to the header of the method:

public void readFile(String filename) throws IOException
{

. . .
}

If a method can throw more than one type of exception we must
specify all of them:

public Connection openConnection(Address addr)
throws ConnectException, UnknownAddrException {

. . .

Exceptions and Methods (cont.)

Any exception that can be thrown by a method is part of the method's
public programming interface: callers of a method must know about
the exceptions that a method can throw to intelligently and
consciously what to do about those exceptions.

Note: When a method is overridden in a subclass, it must not throw
exceptions not specified in the superclass.

There are two types of exceptions:

runtime exceptions - exceptions that can occur almost
everywhere, they are usually produced directly by the runtime
system (arithmetic exceptions, pointer exceptions, indexing
exceptions).

checked exceptions - all other exceptions (including user
defined exceptions).

The compiler checks that checked exceptions are either caught or
specified. Runtime exceptions need not be caught or specified.

Hierarchy of Exceptions

PSfrag replacements

Throwable

Error Exception

RuntimeException



Hierarchy of Exceptions (cont.)

Subclasses of Throwable:

Subclasses of Error - exceptions of that indicates serious
problems that a reasonable application should not try to catch.

Subclasses of Exception - “normal” exceptions that a reasonable
application might want to catch. User-defined exceptions should
be subclasses of Exception (but not of RuntimeException).

Subclasses of RuntimeException - runtime exceptions, usually
produced by the runtime system. An application might want to
catch them.

Note: The classes Throwable, Error, Exceptions, and RuntimeException
are from the package java.lang.

It is not necessary to catch or specify subclasses of Error and
RuntimeException. All other exceptions must be either caught or
specified.

Hierarchy of Exceptions (cont.)

It is convenient to hierarchize exceptions using inheritance. This
approach enables:

grouping of error types

error differentiation.

public class StackException extends Exception {
public StackException(String message) {

super(message);
}

}

public class EmptyStackException extends StackException {
public EmptyStackException() {

super("The stack is empty.");
}

}

Throwing an Exception

Any Java code can throw an exception using the throw statement:

throw someThrowableObject;

The throw statement requires a single argument - a throwable object.

An example of throwing an exception in an implementation of a stack:

public Object pop() throws EmptyStackException {
if (size == 0) {

throw new EmptyStackException();
}
Object obj = objectAt(size - 1);
setObjectAt(size - 1, null);
size--;
return obj;

}

Class Throwable

The constructors of java.lang.Throwable:

Throwable()

Throwable(String message)

Throwable(String message, Throwable cause)

Throwable(Throwable cause)

The most important methods:

String getMessage()

Throwable getCause()

Throwable initCause(Throwable cause)

String toString()

void printStackTrace()

Note: Every exception contains information about the call stack at the
moment when the exception was created.



Class Error

An Error is a subclass of Throwable that indicates serious problems
that a reasonable application should not try to catch. Most such errors
are abnormal conditions.

The most important subclasses (in the package java.lang):

VirtualMachineError
OutOfMemoryError
StackOverflowError
InternalError
UnknownError

LinkageError

ThreadDeath

AssertionError

Class RuntimeException

The most important subclasses of java.lang.RuntimeException:

ArithmeticException

IndexOutOfBoundsException
ArrayIndexOutOfBoundsException
StringIndexOutOfBoundsException

IllegalArgumentException
NumberFormatException

NullPointerException

ClassCastException

NegativeArraySizeException

ArrayStoreException

IllegalStateException

UnsupportedOperationException

Exception Advantages

The use of exceptions has the following advantages over traditional
error management techniques:

Separating error handling code from “regular” code
A problem which can raise at many places in program can be
handled in only one place.

Propagating errors up the call stack
Mechanism enabling propagation of exceptions over the call
stack enables transparent handling of errors raised in libraries.

Grouping error types and error differentiation
Multiple types of errors can be handled similarly at one place.


	Exceptions
	Exceptions - Example
	Exceptions - Motivation
	Exceptions - Motivation (cont.)
	Exceptions - Motivation (cont.)
	Exceptions - Motivation (cont.)
	Exception Objects
	Catching Exceptions
	The lstinline {try} Block
	The lstinline {catch} Block(s)
	The lstinline {catch} Block(s)
(cont.)
	The lstinline {catch} Block(s)
(cont.)
	The lstinline {finally} Block
	Exceptions and Methods
	Exceptions and Methods (cont.)
	Hierarchy of Exceptions
	Hierarchy of Exceptions (cont.)
	Hierarchy of Exceptions (cont.)
	Throwing an Exception
	Class lstinline {Throwable}
	Class lstinline {Error}
	Class lstinline {RuntimeException}
	Exception Advantages

