
Streams

Often a program needs to:

bring in information from an external source, or

send out information to an external destination.

The information can be:

in a file on a disk

somewhere on the network

in memory

in another program

Streams present an abstraction that allows to access (read or write)
such information sequentially.

Using the streams we can access sources and destinations of
information in a unified way no matter where they actually are.

Streams

We distinguish two types of streams:

input streams - programs read from them

output streams - programs write to them

The algorithms for sequentially reading and writing data are basically
the same:

Reading
open a stream
while more information

read information
close the stream

Writing
open a stream
while more information

write information
close the stream

Streams

The package java.io contains a collection of stream classes.

The stream classes are divided into two class hierarchies:

Byte Streams - they work on streams of 8-bit bytes (binary
data). They are subclasses of (abstract) classes:

InputStream - input streams

OutputStream - output streams

Character Streams - they work on streams of 16-bit characters
(text files). They are subclasses of (abstract) classes:

Reader - input streams

Writer - output streams

Streams
InputStream:

int read()
int read(byte[] b)
int read(byte[] b, int off, int len)

OutputStream:
void write(int b)
void write(byte[] b)
void write(byte[] b, int off, int len)

Reader:
int read()
int read(char[] cbuf)
int read(char[] cbuf, int off, int len)

Writer:
void write(int c)
void write(char[] cbuf)
void write(char[] cbuf, int off, int len)



Streams

There are also other methods. All these classes contain method

void close()
Note: The method close() can be called either explicitly, or implicitly by
the garbage collector.

The classes InputStream and Reader contain methods

long skip(long n)

boolean markSupported()

void mark(int readAheadLimit)

void reset()

The classes OutputStream and Writer contain method

void flush()

Most of the methods that work with streams can throw
java.io.IOException (or some of its subclasses).

File Streams

The file streams read or write a file on the file system:

FileInputStream

FileOutputStream

FileReader

FileWriter

An example of use of FileReader and FileWriter:

Reader in = new FileReader("input.txt");
Writer out = new FileWriter("output.txt");
int c;
while ((c = in.read()) >= 0) {

out.write(c);
}
in.close();
out.close();

File Streams

It is better to read and write bigger chunks of data:

InputStream in = new FileInputStream("input.txt");
OutputStream out = new FileOutputStream("output.txt");
final int BUF_LEN = 8192;
byte[] buf = new byte[BUF_LEN];
int l;
while ((l = in.read(buf, 0, BUF_LEN)) >= 0) {

out.write(buf, 0, l);
}
in.close();
out.close();

File Streams

File streams can be created using:

a file name (class String)

a file object (class File)

a file descriptor (class FileDescriptor)

For example, the class FileReader contains the following constructors:

FileReader(String fileName)

FileReader(File file)

FileReader(FileDescriptor fd)

Classes FileOutputStream and FileWriter contain also constructors
that allow to specify if an existing file should be overwritten or data
should be appended to it:

FileOutputStream(String name, boolean append)

FileOutputStream(File file, boolean append)



Class File

The instances of the class java.io.File represent files on the file
system.

It presents an abstract, system-independent view of hierarchical
pathnames.

We can create a File object for a file on the file system and query the
object for information about the file, such as:

the full path name

the name of its parent directory

if it is directory or a regular file

if it is an absolute or relative pathname

if the file exists

the length of the file

the access rights (if it can be read and/or written)

other attributes (time of modification, if it is hidden, ...)

Class File (cont.)

We can use an object of class File also for manipulation with the
given file. We can for example:

create the file

delete the file

rename the file

obtain a list of files in the directory

create a subdirectory

set time of modification

create temporary files

Example of a deletion of a file:

String filename = "test.txt";
File f = new File(filename);
boolean ok = f.delete();
System.out.println(ok ? "O.K." : "Not deleted");

Class File (cont.)

Example of use of the class File:

File input = new File("input.txt");
if (!input.exists()) {

System.err.println("Error: file \"" + input.getName() +
"\" doesn't exist");

return;
}

FileReader reader = new FileReader(input);
...

Filter Streams

The java.io package provides a set of abstract classes that define and
partially implement filter streams:

FilterInputStream

FilterOutputStream

FilterReader

FilterWriter

Filter streams allow to combine features of streams and achieve
desired functionality.

A filter stream is constructed on another stream (the underlying
stream):

The read method reads input from the underlying stream, filters
it and passes to the caller.

The write method filters output and writes the resulting data to
the underlying stream.



Buffered Streams

An example of filter streams are buffered streams:

BufferedInputStream

BufferedOutputStream

BufferedReader
LineNumberReader

BufferedWriter

An example of use of BufferedReader:

BufferedReader reader =
new BufferedReader(new FileReader("input.txt"));

String s;
while((s = reader.readLine()) != null) {

System.out.println(s);
}

Other Types of Streams

Another type of filter streams are pushback streams:

PushbackInputStream

PushbackReader

They add to streams the ability to “push back” or “unread” bytes or
characters.

The are streams for conversion between byte streams and character
streams:

InputStreamReader

OutputStreamWriter
Note: The character encoding used by these streams can be specified in
their constructors.

Reader r = new InputStreamReader(
new FileInputStream("input.txt"));

Writer w = new OutputStreamWriter(
new FileOutputStream("output.txt"), "iso-8859-2");

Print Streams

Print streams allow to print values of different data types in a human
readable form:

PrintStream

PrintWriter

Unlike other streams the print streams never throw an IOException;
instead, exceptional situations merely set an internal flag that can be
tested via the checkError() method.
Optionally, they can be created so as to flush automatically after every
end of line.
The overloaded methods print() and println() are used to print
values of various data types:

void print(boolean b)

void print(char c)

void print(int i)

. . .

Print Streams (cont.)

The methods println() should be used to print line separators
instead of using '\n' in printed strings.

In the following example

PrintWriter w = new PrintWriter(
new FileOutputStream("output.txt"));

w.print("Hello\n");

it is better to use

w.println("Hello");

Different platforms use different line separators:

Platform Decimal Chars
MS Windows 13 10 "\r\n"
Unix 10 "\n"
MacOS 13 "\r"



Standard Input and Output

Three standard streams are streams are defined in the class
java.lang.System as static final variables:

in - standard input (InputStream)

out - standard output (PrintStream)

err - standard error output (PrintStream)

All these streams are implicitly opened.

These streams should not be closed.

Standard input stream typically corresponds to keyboard input.

Standard output and error streams typically correspond to display
output.

All these streams can be redirected by a user to a file or another
program:

$ java MyClass < input.txt > output.txt
$ java MyClass < input.txt | less

Stream Tokenizer
The StreamTokenizer class takes an input stream and parses it into
“tokens”, allowing the tokens to be read one at a time. The stream
tokenizer can recognize identifiers, numbers, quoted strings, and
various comment styles.

StreamTokenizer s = new StreamTokenizer(
new InputStreamReader(System.in));

s.eolIsSignificant(true);
loop: while (true) {

switch (s.nextToken()) {
case StreamTokenizer.TT_EOF: break loop;
case StreamTokenizer.TT_WORD:

System.out.println("a word: " + s.sval); break;
case StreamTokenizer.TT_NUMBER:

System.out.println("a number: " + s.nval); break;
case StreamTokenizer.TT_EOL:

System.out.println("EOL"); break;
default:

System.out.println("other: " + (char)s.ttype);
}

}

Reading from URL

The streams are also used to represent network connections:

URL url = new URL("http://java.sun.com/docs");
InputStream in = url.openStream();
OutputStream out = new FileOutputStream("output.txt");
int c;
while ((c = in.read()) >= 0) {

out.write(c);
}
in.close();
out.close();

Note: The class URL is from the java.net package.

Data Streams
There are input and output streams for reading and writing primitive
data types in a binary (but portable) format:

DataInputStream
DataOutputStream

The class DataInputStream contains methods such as:
void readFully(byte[] b)
void readFully(byte[] b, int off, int len)
boolean readBoolean()
byte readByte()
int readUnsignedByte()
short readShort()
int readUnsignedShort()
int readInt()
String readUTF()
. . .



Data Streams (cont.)

The class DataOutputStream contains methods such as:
void writeBoolean(boolean v)
void writeByte(int v)
void writeChar(int v)
void writeInt(int v)
void writeLong(long v)
void writeFloat(float v)
void writeDouble(double v)
void writeBytes(String s)
void writeChars(String s)
void writeUTF(String str)

All these methods for reading and writing binary data are declared in
interfaces:

DataInput
DataOutput

Serialization

Java's object serialization allows to take any object that implements
the java.io.Serializable interface and turn it into a sequence of bytes
that can later be fully restored to regenerate the original object.

The following classes are used to read and write objects:

ObjectInputStream

ObjectOutputStream

It is possible to use these classes to read and write primitive data
types since they implement interfaces DataInput and DataOutput.

Note: Instance variables defined as transient and static variables are
prevented from serialization.

The interface java.io.Serializable does not declare any methods.

Serialization (cont.)

Writing into an object stream:

FileOutputStream fos = new FileOutputStream("t.tmp");
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeInt(12345);
oos.writeObject("Today");
oos.writeObject(new Date());
oos.close();

Reading from an object stream:

FileInputStream fis = new FileInputStream("t.tmp");
ObjectInputStream ois = new ObjectInputStream(fis);
int i = ois.readInt();
String today = (String) ois.readObject();
Date date = (Date) ois.readObject();
ois.close();

Serialization (cont.)

Classes that require special handling during the serialization and
deserialization process must implement two special methods with the
given signatures:

private void writeObject(ObjectOutputStream s)
throws IOException {

s.defaultWriteObject();
// customized serialization code

}

private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException {

s.defaultReadObject();
// customized deserialization code
// . . .
// followed by code to update the object, if necessary

}



Serialization (cont.)

For complete, explicit control of the serialization process, a class
must implement the java.io.Externalizable interface.

For Externalizable objects, only the identity of the object's class is
automatically saved by the stream. The class is responsible for writing
and reading its contents.

package java.io;

public interface Externalizable extends Serializable {
public void writeExternal(ObjectOutput out)

throws IOException;

public void readExternal(ObjectInput in)
throws IOException, java.lang.ClassNotFoundException;

}

Note: Default constructor of a deserialized object implementing
Externalizable is always invoked. Thus the constructor must be
public.

Random Access Files

The input and output streams are sequential access streams.
Random access files permit nonsequential, or random, access to a
file's contents.
The RandomAccessFile class in the java.io package implements a
random access file.

Note: The RandomAccessFile class is not part of class hierarchy of
streams, but it implements DataInput and DataOutput interfaces.

It is possible to open a random access file only for reading:

new RandomAccessFile("file.txt", "r");

And also for reading and writing:

new RandomAccessFile("file.txt", "rw");

After the file has been opened, the common methods read() and
write() can be used for reading and writing.

Random Access Files (cont.)

The class RandomAccessFile supports the notion of a file pointer
that indicates the current location in the file.

When the file is opened, the file pointer is set to 0 (to the
beginning of the file).

Calls to the read() and write() methods adjust the file pointer
by the number of bytes read or written.

The RandomAccessFile class contains three methods for explicitly
manipulating the file pointer:

int skipBytes(int n) - moves the file pointer forward the specified
number of bytes

void seek(long pos) - positions the file pointer just before the
specified byte

long getFilePointer() - returns the current byte location of the file
pointer

Random Access Files (cont.)

The RandomAccessFile class contains also methods for manipulation
with the length of the file:

long length() - returns the length of the file

void setLength(long newLength) - sets the length of the file


	Streams
	Streams
	Streams
	Streams
	Streams
	File Streams
	File Streams
	File Streams
	Class lstinline {File}
	Class lstinline {File} (cont.)
	Class lstinline {File} (cont.)
	Filter Streams
	Buffered Streams
	Other Types of Streams
	Print Streams
	Print Streams (cont.)
	Standard Input and Output
	Stream Tokenizer
	Reading from URL
	Data Streams
	Data Streams (cont.)
	Serialization
	Serialization (cont.)
	Serialization (cont.)
	Serialization (cont.)
	Random Access Files
	Random Access Files (cont.)
	Random Access Files (cont.)

