
Data Structures

The basic data structures are:

array

list

hashtable

tree

Array: indexed access, can be resizable

0 1 2 3 4 5 6 7 8 9 10 11 12 13

List: singly or doubly linked, can be circular

Data Structures (cont.)

Hashtable: Tree:

Abstract Data Types

Data structures support different operations:

insert an element

remove an element

search an element

. . .

Abstract data types are interfaces specifying what operations are
provided. Examples of ADTs:

Set

Dictionary - also called Map

Vector - resizable array

Stack - also called LIFO

Queue - also called FIFO

Priority Queue

Collections in Java

A collection (sometimes called container) is an objects that groups
multiple elements into single unit.

Earlier versions of Java included the following collections:

java.util.Vector

java.util.Hashtable

array

Current versions of Java contain collection framework - a unified
architecture for representing and manipulating collections. It consists
of:

Interfaces - abstract data types representing collections

Implementations - concrete implementations of the interfaces

Algorithms - methods that perform useful computations
(searching and sorting)



Interfaces

The collection interfaces in the package java.util form a hierarchy:

Collection

Set

SortedSet

List

Map

SortedMap

Implementations

The classes implementing collections in the package java.util:

AbstractSet

LikedHashSet LinkedList

AbstractSequentialListTreeSetHashSet ArrayList

AbstractList

AbstractCollection

Stack

Vector

Implementations (cont.)

The classes implementing maps:

HashMap WeakHashMap

LinkedHashMap

IdentityHashMap

AbstractMap

TreeMap

Dictionary

Hashtable

obsolete

The Collection Interface

The Collection is the root of the collection hierarchy.

A Collection represents a group of objects - its elements. (Some
implementations allow duplicate elements and others do not.)

The primary use of the Collection interface is pass around collections
of objects where maximum generality is desired.

The Collection interface declares the following basic operations:

int size()

boolean isEmpty()

boolean contains(Object o)

boolean add(Object o) - optional

boolean remove(Object o) - optional

Iterator iterator()

Note: Some operation are designated as optional. Implementations that
do not implement them throw an UnsupportedOperationException.



Iterators

An iterator provides a way to access the elements of an aggregate
object sequentially without exposing its underlying representation.

The java.util.Iterator provides uniform interface for traversing
different aggregate structures.

public interface Iterator {
boolean hasNext();
Object next();
void remove(); // optional

}

Example of use:

Collection c = new ArrayList();
. . . // fill the collection

for (Iterator i = c.iterator(); i.hasNext(); ) {
Object o = i.next();

. . . // process the element
}

Enumerations

Earlier implementations of Java used the java.util.Enumeration
interface instead of iterator:

public interface Enumeration {
boolean hasMoreElements();
Object nextElement();

}

The differences between them are:

Iterator allows the caller to remove elements from the
underlying collection.

Method names have been improved in Iterator.

New implementations should use Iterator in preference to
Enumeration.

Iterators (cont.)

The Iterator interface contains the optional method remove() that
removes from the underlying collection the last element that was
returned by next():

The remove() method may be called only once per call to
next() - an exception is thrown if this condition is violated.

The remove() method is the only safe way to modify a
collection during iteration.

The behavior is unspecified if the underlying collection is
modified in any other way while iteration is in progress.

Bulk Operations

The bulk operations perform some operation on an entire Collection
in a single shot:

boolean containsAll(Collection c)

boolean addAll(Collection c) - optional

boolean removeAll(Collection c) - optional

boolean retainAll(Collection c) - optional

void clear() - optional

For example. to remove all instances of a specified element e from a
collection c we can use:

c.removeAll(Collections.singleton(e));

Note: The class Collections contains many useful static methods that
operate on collections. The singleton() method returns an immutable
collection (set) containing only the specified object.



Array Operations

The toArray() allow the contents of a Collection to be translated
into an array:

Object[] toArray()

Object[] toArray(Object[] a)

The following code dumps the contents of c into a newly allocated
array:

Object[] a = c.toArray();

Suppose c is a collection known to contain only strings. The following
code can be used to dump the contents of c into a newly allocated
array of String:

String[] a = (String[])c.toArray(new String[0]);

Note: If the collection fits in the specified array, this array is used,
otherwise a new array is allocated.

The Set Interface

A Set is a Collection that cannot contain duplicate elements. It
models a mathematical set abstraction.
The Set interface contains no methods than those inherited from
Collection.

There are two general-purpose Set implementations:

HashSet - stores its elements in a hashtable, it is the
best-performing implementation.

TreeSet - stores its elements in a red-black tree, guarantees the
order of iteration (the elements will be sorted).

The following code creates a new collection containing the same
elements as the collection c, but with all duplicates eliminated:

Collection d = new HashSet(c);

The Set Interface (cont.)

Example of use of a Set that prints out any duplicate words, the
number of distinct words, and a list of the words with duplicates
eliminated:

import java.util.*;

public class FindDuplicates {
public static void main(String[] args) {

Set s = new HashSet();
for (int i = 0; i < args.length; i++) {

if (!s.add(args[i])) {
System.out.println("Duplicate detected: "

+ args[i]);
}

}
System.out.println(s.size() +

" distinct words detected: " + s);
}

}

The Set Interface (cont.)

The bulk operations on sets correspond to standard set-algebraic
operations:

s1.containsAll(s2) - returns true if s2 is a subset of s1

�� � ��

s1.addAll(s2) - transforms s1 into the union of s1 and s2

� � � � �

s1.retainAll(s2) - transforms s1 into the intersection of s1
and s2

� � � � �

s1.removeAll(s2) - transforms s1 into the set difference of
s1 and s2

� � � � �



The List Interface

A List is an ordered Collection (sometimes called a sequence). Lists
may contain duplicate elements.

There are two general-purpose List implementations:

ArrayList - generally the best-performing implementation

LinkedList - offers better performance under certain
circumstances

The List contains methods for positional access that manipulate
elements based on their numerical position in the list:

Object get(int index)

Object set(int index, Object element) - optional

void add(int index, Object element) - optional

Object remove(int index) - optional

boolean addAll(int index, Collection c) - optional

The List Interface (cont.)

For example, the following method swaps two elements of a list:

private static void swap(List a, int i, int j) {
Object tmp = a.get(i);
a.set(i, a.get(j));
a.set(j, tmp);

}

The following method randomly permutes the specified List using the
specified source of randomness:

public static void shuffle(List a, Random rnd) {
for (int i = a.size(); i > 1; i--) {

swap(a, i-1, rnd.nextInt(i));
}

}

Note: The class Collections contains such method shuffle().

The List Interface (cont.)

The remove() operation always removes the first occurrence of
the specified element.

The add() and addAll() operations always append the new
element(s) to the end of the list.

To concatenate one list to another we can use:

list1.addAll(list2);

The non-destructive version of concatenation:

List list3 = new ArrayList(list1);
list3.addAll(list2);

The List interface contains two methods for searching:

int indexOf(Object o)
int lastIndexOf(Object o)

The ListIterator Interface

The List interface supports its own extended version of iterator:

public interface ListIterator extends Iterator {
boolean hasNext();
Object next();

boolean hasPrevious();
Object previous();

int nextIndex();
int previousIndex();

void remove(); // optional
void set(Object o); // optional
void add(Object o); // optional

}



The ListIterator Interface (cont.)

To obtain ListIterator we can use List methods:

ListIterator listIterator()

ListIterator listIterator(int index)

A list iterators has a cursor pointing between elements:

0 1 2 3 4 1098765

0 1 2 3 4 5 6 7 8 9 10 11Index of cursor:

The ListIterator Interface (cont.)

Iterating backwards in a list:

for (ListIterator i = list.listIterator(list.size());
i.hasPrevious(); ) {

Object o = i.previous();
. . .

}

A method that replaces all occurrences of one specified value with
another:

public static void replace(List l, Object x, Object y) {
for (ListIterator i = l.listIterator(); i.hasNext(); ) {

if (x == null ? i.next() == null
: x.equals(i.next())) {

i.set(y);
}

}
}

The List Interface (cont.)

The List interface contains a method returning a range-view:

List subList(int fromIndex, int toIndex)

The returned List contains the portion of the original list whose
indexes range from fromIndex, inclusive, to toIndex, exclusive.

Changes in the former List are reflected in the latter.

For example, to remove a range of elements from a list we can use:

list.subList(fromIndex, toIndex).clear();

Searching for an element in a range:

int i = list.subList(fromIndex, toIndex).indexOf(o);
int j = list.subList(fromIndex, toIndex).lastIndexOf(o);

The Collections Class
The Collections class contains static methods implementing different
algorithms working on collections. Most of them apply specifically to
List:

void sort(List list)
int binarySearch(List list, Object key)
void reverse(List list)
void shuffle(List list)
void fill(List list, Object obj)
void copy(List dest, List src)

There is a similar class called Arrays containing as static methods
algorithms working on arrays.



The Map Interface

A Map is an object that maps keys to values.

A map cannot contain duplicate keys: Each key can map to at most
one value.

The most important methods:

Object put(Object key, Object value) - optional

Object get(Object key)

Object remove(Object key) - optional

boolean containsKey(Object key)

boolean containsValue(Object value)

int size()

boolean isEmpty()

The Map Interface (cont.)

Other methods:

void putAll(Map t) - optional

void clear() - optional

Set keySet()

Collection values()

Set entrySet()

The Collection-view methods provide the only means to iterate over
a Map:

for (Iterator i = m.keySet().iterator(); i.hasNext(); ) {
System.out.println(i.next());

}

The Map Interface (cont.)

There are two general-purpose Map implementations:

HashMap - stores its entries in a hash table, it is the
best-performing implementation

TreeMap - stores its entries in a red-black tree, guarantees the
order of iteration

There is also an older class Hashtable.
Hashtable has been retrofitted to implement Map.

Object Ordering

Objects that implement the java.lang.Comparable interface can be
ordered automatically. The Comparable interface provides natural
ordering for a class:

public interface Comparable {
public int compareTo(Object o);

}

The method o1.compareTo(o2) returns:

a negative integer - if o1 is less than o2

zero - if o1 is equal to o2

a positive integer - if o1 is greater than o2

Many standard classes such as String and Date implement the
Comparable interface.



Object Ordering (cont.)

import java.util.*;

public class Name implements Comparable {
private String firstName, lastName;

. . .

public boolean equals(Object o) {
if (!(o instanceof Name)) return false;
Name n = (Name)o;
return firstName.equals(n.firstName) &&

lastName.equals(n.lastName);
}

public int hashCode() {
return 31 * firstName.hashCode() +

lastName.hashCode();
}

. . .

Object Ordering (cont.)

. . .

public int compareTo(Object o) {
Name n = (Name)o;
int cmp = lastName.compareTo(n.lastName);
if (cmp != 0) return cmp;
return firstName.compareTo(n.firstName);

}
}

Note how methods equals() and hashCode() are redefined to be
consistent with compareTo().

Comparators

If we want to sort objects in some other order than natural ordering,
we can use the Comparator interface:

public interface Comparator {
int compare(Object o1, Object o2);

}

A Comparator is an object that encapsulates ordering.

The compare() method compares two its arguments, returning a
negative integer, zero, or a positive integer as the first argument is
less than, equal to, or greater than the second.

Methods implementing different algorithms in classes Collections
and Arrays allow to specify the comparator that should be used in
these algorithms.

The SortedSet Interface

A SortedSet is a Set that maintains its elements in ascending order,
sorted according to the elements' natural order, or according to a
Comparator provided at SortedSet creation time.

The SortedSet adds the following methods to the methods declared in
the Set interface:

SortedSet subSet(Object fromElement, Object toElement)

SortedSet headSet(Object toElement)

SortedSet tailSet(Object fromElement)

Object first()

Object last()

Comparator comparator()



The SortedSet Interface (cont.)

There are some differences on behavior of methods inherited from the
Set interface:

The iterator returned by the iterator() traverses the sorted set
in order.

The array returned by toArray() contains the sorted set's
elements in order.

The SortedSet interface is implemented by the class:

TreeSet

The SortedMap Interface

A SortedMap is a Map that maintains its entries in ascending order,
sorted according to the keys' natural order, or according to a
Comparator provided at SortedMap creation time.

The SortedMap adds the following methods to the methods declared
in the Map interface:

Comparator comparator()

SortedMap subMap(Object fromKey, Object toKey)

SortedMap headMap(Object toKey)

SortedMap tailMap(Object fromKey)

Object firstKey()

Object lastKey()

There is one class implementing the SortedMap interface:

TreeMap

Implementations

The general-purpose implementations are summarized in the table
below:

Implementations
Hash Table Resizable Array Balanced Tree Linked List

Set HashSet TreeSet
List ArrayList LinkedList
Map HashMap TreeMap

The SortedSet and SortedMap interfaces are implemented by TreeSet
and TreeMap classes.

The BitSet Class

The java.util.BitSet class implements a vector of bits that grows as
needed.
Each component of the bit set has a boolean value. The bits of a BitSet
are indexed by nonnegative integers. Individual indexed bits can be
examined, set, or cleared.
One BitSet may be used to modify the contents of another BitSet
through logical AND, logical inclusive OR, and logical exclusive OR
operations.

The BitSet class can used as an efficient implementation of a set if the
corresponding universe of possible values is finite and small.

The logical operations then correspond to the set operations.

Note: The BitSet class is not part of the collection framework.


	Data Structures
	Data Structures (cont.)
	Abstract Data Types
	Collections in Java
	Interfaces
	Implementations
	Implementations (cont.)
	The lstinline {Collection} Interface
	Iterators
	Enumerations
	Iterators (cont.)
	Bulk Operations
	Array Operations
	The lstinline {Set} Interface
	The lstinline {Set} Interface (cont.)
	The lstinline {Set} Interface (cont.)
	The lstinline {List} Interface
	The lstinline {List} Interface (cont.)
	The lstinline {List} Interface (cont.)
	The lstinline {ListIterator} Interface
	The lstinline {ListIterator} Interface (cont.)
	The lstinline {ListIterator} Interface (cont.)
	The lstinline {List} Interface (cont.)
	The lstinline {Collections} Class
	The lstinline {Map} Interface
	The lstinline {Map} Interface (cont.)
	The lstinline {Map} Interface (cont.)
	Object Ordering
	Object Ordering (cont.)
	Object Ordering (cont.)
	Comparators
	The lstinline {SortedSet} Interface
	The lstinline {SortedSet} Interface (cont.)
	The lstinline {SortedMap} Interface
	Implementations
	The lstinline {BitSet} Class

