Networking

The whole point of a network is to allow two machines to connect and
talk to each other. Once the two machines have found each other they
can have two-way conversation.

Clients and Servers

One of the communicating machines-server-serves its services, while
the second one-client-uses the services provided by the server. From
the networking point of view the distinction is important only while
the client is trying to connect to the server:

= the job of the server is to listen for a connection,
= the job of the client is to try to make a connection to a server.

Client Server

Note: Once they have connected, it becomes a two-way communication
process and it does not matter anymore that one happened to take the
role of server and the other happened to take the role of the client.



Identifying a Machine

Machines are uniquely identified within the Internet by IP address,
which can exist in two forms. Familiar associating machines with
human readable form, for instance java.cs.vsb.cz. Alternatively,
there is the dotted quad form, which is four numbers separated by
dots, such as 158.196.149.94.

Note: In both cases, the IP address is represented internally as a 32-bit
number (so each of the quad numbers cannot exceed 255).

The java.net.InetAddress class enables, among others, translation
between the domain name and address, and vice versa.

String nameOrAddress = -
InetAddress address = InetAddress.getByName(nameOrAddress) ;
System.out.printin("address: " + address.getHostAddress());
System.out.printin("name: " + address.getHostName());



Identifying an Application

An IP address is not enough to identify a unique server, since many

servers can exist on one machine. Each IP machine also contains
ports, and when a client or a server is set up, a port must be chosen.

Note: The port is not a physical location in a machine, but a software
abstraction. Typically, each service is associated with a unique port
number on a given server machine.



Uniform Resource Locator

A URL identifies resources via a representation of their primary access

mechanism, i.e., their network location. The URL consists of several
components:

protocol://hostname:port/path?query

protocol to be used to fetch the resource,

hostname of the machine on which the resource lives,
path to the file on the machine,

port number to which to connect (typically optional),
query is a reference to a named anchor within a resource.

try {
URL url = new URL("http://java.cs.vsb.cz/docs/slides.pdf");
InputStream slides = url.openStream();

}
catch (MalformedURLException e) {

}



Socket

The socket is the software abstraction used to represent the
“terminals” of a connection between two machines. For a given
connection, there is a socket on each machine.

Application Application

B InputStream InputStream .
Socket X Socket
OutputStream OutputStream




Server

A java.net.ServerSocket instance waits for requests to come in
over the network and returns a result to the requester.

int port = 1234;
ServerSocket server = new ServerSocket(port);

while (true) {

Socket client = server.accept();
Reader reader =

new InputStreamReader(client.getInputStream());
Writer writer =

new OutputStreamWriter(client.getOutputStream());

char c;
while ((c = (char)reader.read()) != -1) {
writer.write(Character.isLowerCase(c) ?

Character.toUpperCase(c) : Character.toLowerCase(c));
writer.flush();



Client

A java.net.Socket is an endpoint for communication between two
machines. Its instances are initialized with information needed to
identify a remote application.

String hostname = "localhost";
int port = 1234;

String message = "aBcDeFgH";

Socket client = new SocketChostname, port);
Reader reader =

new InputStreamReader(client.getInputStream());
Writer writer =

new OutputStreamWriter(client.getOutputStream());
writer.write(message);
writer.flush(Q;

int length = 0, c;

while ((c = reader.read()) != -1 &&
++length < message.length()) {
System.out.print((char)c);

}



Remote Method Invocation

The RMI provides the mechanism by which a server and a client
communicate and pass information back and forth. Such an
application is sometimes referred to as a distributed object

application.

Application

Object B

Application

Application

Object A

vy

Object C

|

Object D




Remote Interface

When a remote object is created, the underlying implementation is

masked by remote interface. The interface must have the following
properties:

= the interface must be public,
= the interface must extend the interface java.rmi.Remote,

= every method in the interface must declare that it can throw
java.rmi.RemoteException.

public interface Engine extends Remote {
Object executeTask(Task task) throws RemoteException;
}

public interface Task extends Serializable {
Object execute();
}



Implementing a Remote Object

A remote object must implement a remote interface and inherit from
a java.rmi.server.RemoteObject. The RemoteObject class
implements the Object behavior for remote objects.

public class EnginelImpl
extends UnicastRemoteObject implements Engine {
public EngineImpl () throws RemoteException {

super () ;

}

public Object executeTask(Task task) throws RemoteException
return task.execute();
}

¥
public class TaskImpl implements Task {

public Object execute() {
Double result = new Double(45.6);
System.out.printin("calculating result...");

return result;



Object Request Broker

The ORB takes care of all of the details involved in routing a request
from client to object, and routing the response to its destination.

Object Servant
Stub Skeleton
!
ORB ORB
L » Network —




Stubs and Skeletons

Stubs and skeletons that provide the network connection operations
and allow to pretend that the remote object is just another local
object on a machine. They are automatically performing serialization
and deserialization as they marshal all of the arguments across the
network and return the result.

= Skeleton
Skeleton for a remote object is server-side entity that contains
a method which dispatches calls to the actual remote object
implementation.

= Stub
Stub is a proxy for a remote object which is responsible for
forwarding method invocations on remote objects to the server
where the actual remote object implementation resides. A
client's reference to a remote object, therefore, is actually a
reference to a local stub. The stub implements only the remote

interfaces, not any local interfaces that the remote object also
implements.



Publishing Remote Object

Before a caller can invoke a method on a remote object, that caller
must first obtain a reference to the remote object. The reference can
be obtained from RMI registry.

> rmiregistry

= Security Manager
All programs using RMI must install a security manager. The
security manager ensures that the operations performed by
downloaded code go through a set of security checks.

1f (System.getSecurityManager() == null)
System.setSecurityManager (new RMISecurityManager ()

= Binding the Remote Object
The java.rmi.Naming interface is used as a front-end API for
binding, or registering, and looking up remote objects in the
registry.
Engine engine = new EngineImpl();
Naming.rebind("engine", engine);
System.out.println("engine bound");



Passing Objects in RMI

Any entity of any type can be passed to or from a remote method as
long as the entity is an instance of a type that is a primitive data type,
a remote object, or a serializable object, which means that it
implements the interface java.io0.Serializable. The rules
governing how arguments and return values are passed are as follows:

= Remote objects are essentially passed by reference. Any
changes made to the state of the object by remote method calls
are reflected in the original remote object,

= Local objects are passed by copy, using object serialization. Any
changes to this object's state at the receiver are reflected only in
the receiver's copy, not in the original instance.



	Networking
	Identifying a Machine
	Identifying an Application
	Uniform Resource Locator
	Socket
	Server
	Client
	Remote Method Invocation
	Remote Interface
	Implementing a Remote Object
	Object Request Broker
	Stubs and Skeletons
	Publishing Remote Object
	Passing Objects in RMI

