
Introduction to Programming
(Java)

Roman Szturc (roman.szturc@vsb.cz)
Zdenek Sawa (zdenek.sawa@vsb.cz)

Department of Computer Science
VSB - Technical University of Ostrava

Info for Students

Lectures: Zdenek Sawa (e-mail: zdenek.sawa@vsb.cz, room: A1006)
Consultations: Wednesday 9:00 - 10:30

Exercises: 40 points

Num. Date Points
1. 08.-12.03. 5
2. 22.-26.03. 6
3. 05.-09.04. 6
4. 19.-23.04. 7
5. 03.-07.05. 8
6. 17.-21.05. 8

Exam: 60 points

WWW: http://www.cs.vsb.cz/java/

See also: http://www.cs.vsb.cz/benes/vyuka/upr/index.html

References

Sun Microsystem, Inc., The Source for Java Technology,
http://java.sun.com

J. Gosling, B. Joy, G. Steele, G. Bracha: The Java Language
Specification
http://java.sun.com/docs/books/jls/index.html

JavaTM 2 Platform, Standard Edition, v 1.4.2 API Specification,
http://java.sun.com/j2se/1.4.2/docs/api/index.html

B. Eckel, Thinking in Java,
http://www.mindview.net/Books/TIJ

JavaWorld.com, an IDG Communications company, JavaWorld,
http://www.javaworld.com

Java - Overview

Java is a general-purpose language with the following features:

is object-oriented (class-based)

is cross-platform

is strongly typed

has garbage collection

supports concurrecy

supports exceptions

security is considered

It was created by James Gosling from Sun Microsystems in 1990.
Original name was Oak and it was intended for use in embedded
consumer-electronic applications.

Later in 1993 it was renamed to Java and retargeted to Internet
applications.

First official implementation (JDK 1.0) was released in 1996.

Creating Java Program (Step 1)

Source code creation
In the Java, each method (function) and variable exists within a class
or an object. The Java does not support global functions or variables.
Thus, the skeleton of any Java program is a class definition.

Every Java application must contain a main() method. The method is
invoked when the application is executed by a Java interpreter.

public class HelloWorld {
public static void main(String[] arguments) {

System.out.println("Hello, world...");
}

}

Note: A Java class source code must be stored in file which name starts
with the class name appended with the .java, so the previous example
must be stored in a file called HelloWorld.java.

Creating Java Program (Step 2)

Compilation
Compilation transfers Java source code into Java bytecode. There is
a lot of compilers available. The most often used ones are javac and
jikes.

File name containing the source code is passed to the compiler.
Result bytecode is stored into file whose name is the class name
appended by the .class suffix.

$ javac HelloWorld.java

Note: Each compiler provides its specific options. The most important are
-classpath <path> and -g.

Creating Java Program (Step 3)

Running
Java bytecode can be executed using a Java interpreter. The class
name is passed as an argument to the interpreter.

Environment variable CLASSPATH plays important role while executing
the Java bytecode. It holds list of directories and libraries containg
bytecodes being executed.

$ java HelloWorld
Hello, world...

Note: It is convenient to include the “.” (dot) in the CLASSPATH. The “.”
ensures that bytecodes in the current working directory are successfully
found by interpreter.

Java Environment

Java combines compilation and interpretation techniques. Java source
code is first compiled into an intermediate language called bytecode.
The bytecode helps make “write once, run anywhere” possible.

PSfrag replacements

InterpretationCompilation

Compiler

X.java
(source code)

X.class
(bytecode)

X.class
(bytecode)

Interpret

OS

Object.class

String.class

...

jre.jar

Note: Compilation happens just once; interpretation occurs each time
the program is executed.

Bytecode

An example of bytecode produced by javap utility.

$ javap -c HelloWorld

Compiled from HelloWorld.java
public class HelloWorld extends java.lang.Object {

public HelloWorld();
public static void main(java.lang.String[]);

}

Method HelloWorld()
0 aload_0
1 invokespecial #1 <Method java.lang.Object()>
4 return

Method void main(java.lang.String[])
0 getstatic #2 <Field java.io.PrintStream out>
3 ldc #3 <String "Hello, world...">
5 invokevirtual #4 <Method void println(java.lang.String)>
8 return

The Java Platform

A platform is the hardware or software environment in which
a program runs. The Java platform differs from most other platforms
in that it's a software-only platform that runs on top of other
hardware-based platforms. The Java platform has two components:

Java virtual machine,
Java application programming interface (API).

PSfrag replacements

Java bytecode

Java API

Java virtual machine

Java
platform

Operating system

Hardware-based platform

Note: The Java API is a large collection of ready-made software
components that provide many useful capabilities. The Java API is
grouped into libraries of related classes and interfaces; these libraries
are known as packages.

Java Virtual Machine

Java bytecode is machine code for the Java Virtual Machine (JVM).
Every Java interpreter is an implementation of a JVM.

PSfrag replacements

Java bytecode

Class loader

Bytecode verifier

Interpreter JIT

Runtime system

JVM

Operating system

Hardware

Note: A Java program can be compiled into bytecodes on any platform
that has a Java compiler. The bytecodes can then be run on any
implementation of the JVM, regardless of operating system or hardware
platform.

Syntax and Semantics

Syntax - describes what constructions are possible in the language,
what is a correct program and what is not

Semantics - describes what these constructions mean, e.g., what
computer does when it performs given commands

Java distinguishes between two types of errors:
Compile time errors: They are produced by compiler.

These errors are either
syntax - for example missing ;
semantic - for example assignment between incompatible
types

Run time errors: They are produced by Java Virtual Machine during
execution of a program. Java contains no dangerous
constructions, always an exception is generated.

Overview of the Syntax of Java

The programs consist of classes.

Each class consists of definitions of data and instructions for a
certain kind of objects.

fields (attributes): data of an object
methods: instructions that manipulate with these data (also
called functions or procedures in other languages)

A method consists of a header that defines its name, arguments,
return type, ... and body that contains statements.

Statements manipulate with data stored in variables - either in
fields or in local variables.

Execution of statements includes evaluation of expressions.
The values of expressions are then assigned into variables.

Each variable, value and expression is of some type.

On the lowest level a program is a sequence of lexical elements
(tokens).

Lexical Elements
White space characters and comments are ignored:

white space characters: space (SP), horizontal tab (HT), form
feed (FF), newline (LF), carriage return (CR)

comments: /* this is a comment */

Basic types of lexical elements (tokens) are:

identifiers: x dist1 System9 number_of_elements

keywords: while float int public class

literals: 124 true 'd' "hello"

separators: () { } [] ; : , .

operators: + - * / && = *= < >>=

Literals
integer literals:

0 237L 033 0xDadaCafe 1996 0x00FF00FF

floating point literals:
1e1 2. .3 0.0 3.14f 1.213e-9 1E137D

boolean literals:
true false

character literals:
'a' '%' '\t' '\\' '\'' '\177' '\u03a9'

string literals:
"" "\"" "This is a string." "\r\n"

the null literal:
null

Possible escape sequences in character and string literals:
\b \t \n \f \r \" \' \\ \177 \u2B97

Keywords

abstract for strictfp
boolean goto super
break if switch
byte implements synchronized
case import this
catch instanceof throw
char int throws
class interface transient
const long try
continue native void
default new volatile
do package while
double private
else protected
extends public
final return
finally short
float static

Comments
Java supports three kinds of comments:

One-line comment - the compiler ignores everything from the
“//” to the end of line.

// This is a one-line comment.

Multi-line comment - the compiler ignores everything from the
“/*” to an occurrence of “*/”.

Note: “/*/” is not a valid comment.

/* This is a comment that
continues across lines. */

Documentation comment - the compiler ignores everything
from the “/**” to an occurrence of “*/”. javadoc tool generates
documentation based on content of the comment.

/** This is a documentation comment.
* The comment may contain html tags as well as special
* tags that begin with the '@' sign. */

Types, Values and Variables

Variables are used by program to hold data. Each variable used in
program must be explicitly specified by its data type and name. Java
has two kinds of data types: reference and primitive.

Primitive

A variable of primitive type contains a single value of the
appropriate size and format for its type: a number, a character
or a boolean value.

boolean b = true;
int i = 456;
float f = 2.71828;

Reference

The value of a reference type variable, in contrast to that of
a primitive type, is a reference to (an address of) an object or an
array.

Hashtable h = new Hashtable();
int[] a = new int[20];

Integral Types and Values

Type Range Size [bits]
byte -128..127 8
short -32768..32767 16
int -2147483648..2147483647 32
long -9223372036854775808..9223372036854775807 64
char 0..65535 16

Possible operations on integer values are:
the comparison operators (<, <=, >, >=, ==, !=)
the unary plus and minus (+, -)
the binary arithmetic operators (+, -, *, /, %)
the prefix and postfix increment and decrement operators
(++, --)
the signed and unsigned shift operators (<<, >>, >>>)
the bitwise complement operator (~)
the integer bitwise operators (&, |, ^)

Floating-Point Types and Values

The floating-point values are numbers of the form � � � �

where

Type s m e Size [bits]
float -1, 1 0..2

��

-1 -149..104 32
double -1, 1 0..2

��

-1 -1075..970 64

Type Min. value Max. value
float 1.40239846e-45f 3.40282347e+38f
double 4.94065645841246544e-324 1.79769313486231570e+308

Possible operations on floating-point values are:
the comparison operators (<, <=, >, >=, ==, !=)
the unary plus and minus (+, -)
the binary arithmetic operators (+, -, *, /, %)
the prefix and postfix increment and decrement operators
(++, --)

The Boolean Type and Values

The type boolean has two possible values: true and false

Possible operations on floating-point values are:
the relational operators (==, !=)
the logical complement operator (!)
the binary logical operators (&, |, ^)
the conditional-and and conditional-or operators (&&, ||)
the ternary conditional operator (?:)

Boolean expressions determine the control flow in several kinds of
statements:

the if statement
the while statement
the do statement
the for statement

The Arithmetic Operators

The arithmetic operators refer to the standard mathematical
operators: addition, subtraction, multiplication, division and modulus.

Op. Use Description
+ x + y adds x and y
- x - y subtracts y from x
* x * y multiplies x by y
/ x / y divides x by y
% x % y computes the reminder of dividing x by y

Examples:

i + 1 (x * y) % 5 b * b - 4 * a * c

Some remarks for integer arithmetic operators:
The result contains only the low-order bits of the mathematical
result in case of the arithmetic overflow.

Unary Operators

Java's unary operators can use either prefix or postfix notation.

Operator Use Description
+ +op promotes op to int if it is a byte, short or

char
- -op arithmetically negates op
++ ++op increments op by 1; evaluates to value of op

before the incrementation
++ op++ increments op by 1; evaluates to value of op

after the incrementation
-- --op decrements op by 1; evaluates to value of op

before the decrementation
-- op-- decrements op by 1; evaluates to value of op

after the decrementation

Examples:

-x +(x * y) i++ a[j--]++

Examples of use of ++ and --

Code:

int x = 5; int y;
y = x++;

Results:

x = 6 y = 5

Code:

int x = 5; int y = 11; int z;
z = --x;
x = 2 * (y++ + 3) - x;

Results:

x = 24 y = 12 z = 4

Relational Operators

Relational operators generate a boolean result.

Operator Use Returns true if
> op1 > op2 op1 is greater than op2
>= op1 >= op2 op1 is greater than or equal to op2
< op1 < op2 op1 is less than op2
<= op1 <= op2 op1 is less than or equal to op2
== op1 == op2 op1 and op2 are equal
!= op1 != op2 op1 and op2 are not equal

Examples:

i + 1 < n x == h[2*i+1] a != b

Conditional Operators

Relational operators are often used with conditional operators.

Operator Use Returns true if
&& op1 && op2 op1 and op2 are both true, conditionally eval-

uates op2
|| op1 || op2 either op1 or op2 is both true, conditionally

evaluates op2
! !op1 op1 is false

Examples:

!(n >= 0)
(i < n) && (a[i++] > 0)

If (i>=n) then the value of i is not changed. If (i<n) then i is
incremented by 1.

Bitwise Operators

The bitwise operators allow to manipulate individual bits in an integral
primitive data type. Bitwise operators perform boolean algebra on the
corresponding bits in the two arguments to produce the result.

Operator Use Operation
& op1 & op2 bitwise and
| op1 | op2 bitwise or
^ op1 ^ op2 bitwise xor
~ ~op bitwise complement

Examples:

0x36 & 0x0F 0x06 (00110110 & 00001111)
0x36 | 0x80 0xB6 (00110110 | 10000000)
0x36 ^ 0x07 0x31 (00110110 ^ 00000111)

Shift Operators

Shift operator shifts the bits of the left-hand operand over by the
number of positions indicated by the right-hand operand. The shift
occurs in the direction indicated by the operator itself.

Operator Use Operation
>> op1 >> op2 shift bits of op1 right by distance op2
<< op1 << op2 shift bits of op1 left by distance op2
>>> op1 >>> op2 shift bits of op1 right by distance op2

0x36 << 2 0xD8 (00110110 -> 11011000)

-1 -1 (decimal)
-1 >> 1 -1 (decimal)
-1 >>> 1 2147483647 (decimal)

-1 11111111111111111111111111111111 (binary)
-1 >> 1 11111111111111111111111111111111 (binary)
-1 >>> 1 01111111111111111111111111111111 (binary)

Ternary Operator (?:)

The ternary operator allows to avaluate expresseion in two diferrent
ways depending on some condition.

The expression is of the form:

cond ? expr1 : expr2

The boolean condition cond is evaluated first. If it is true then expr1
is evaluated and the resulting value is the value of the whole
expression. When cond evaluates to false then expr2 is evaluated
and the resulting value is the value of the whole expression.

Example:

(n > 1) ? (a + b) : (a * b)

When (n>1) then the result is (a+b), otherwise the result is (a*b).

Assignment Operators

The basic form of assignment is

expr1 = expr2

Evaluation:

1. The left hand side (expr1) is evaluated. It must by an lvalue -
a variable, an element of an array, a field.

2. The right hand side (expr2) is evaluated.

3. The value of the right hand side is stored into the place denoted
by the left hand side.

4. The value of the whole expression is the value of the right hand
side.

Examples of assignment expressions:

x = (z + y) * a[i]
a[i++] = x + y

Assignment Operators (cont.)

Examples of assignment statements:

x = (z + y) * a[i];
a[i++] = x + y;

Note that an assignment expression is not the same thing as an
assignment statement.

The following construction is legal, but the resulting code is not very
clear:

int y, x;
x = 3 * (y = 2) + 1;

The results are:

x = 7 y = 2

Compound Assignment Operators

There other assignment operators of the form op= where op is some
binary operator:

*= /= %= += -= <<= >>= &= ^= |=

The meaning of

expr1 op= expr2

is the same as

expr1 = expr1 op expr2

except that expr1 is evaluated only once.

For example, the statement x *= 6;
has the same effect as x = x * 6;

Notice that a[i++] += 3;
is not the same as a[i++] = a[i++] + 3;

Cast Expression

The following assinment between variables of different types is
possible:

byte b; int i;
.
.
.

i = b;

The following assignment is illegal:

b = i;

It can be assigned using the cast of the form

(type)expr1

which transforms the value of expr1 to the type type as in the
following code:

b = (byte)i;

Priority of Operators

Operators ordered by priority (from lowest to highest):

Pr. Operators
1. ()
2. [], postfix ++ and --
3. unary +, unary -, ~, !, cast, prefix ++ and --
4. *, /, %
5. +, -
6. <<, >>, >>>
7. <, >, <=, >=, instanceof
8. ==, !=
9. &

10. ^
11. |
12. &&
13. ||
14. ?:
15. =, *=, /=, %=, +=, -=, <<=, >>=, >>>=, &=, ^=, |=

Associativity of Operators

Most binary operators are associative to the left.

For example

a + b + c

has the same meaning as

(a + b) + c

An exception are the asignment operators that are associative to the
right.

For example

a = b = c

has the same meaning as

a = (b = c)

Statements
One of the basic types of statements is an assignment statement:

a = b + c;

Assignment statement must end with semicolon (;).

Some other types of expressions can be also used as statements:

i++;
sum(a, b);

A declation can be also used as a statement:

int i;
double x, y, z;

A declaration can be combined with an assignment of an initial value:

int i = 4;
double x = 46.3, y, z = i * 2.0;

Blocks

Blocks are sequences of statements enclosed between { and }.

Example:

{
a = 3;
int b = a + 1;
a = b * 2;

}

The scope of a declation of a local variable is from the place where it
is declared to the end of the enclosing block.

A block can be used in any place where a single statement can be
used.

Branching Statement

The if-else statement is probably the most basic way to control
program flow.

if (value > value2) {
result = 1;

}
else if (value1 < value2) {

result = -1;
}
else {

result = 0;
}

Similarly we can use:

if (value > value2) result = 1;
else if (value < value2) result = -1;
else result = 0;

Iteration Statements
Java provides three iteration statements. The statements repeat their
bodies until controlling expression evaluates to false.

while

int i = 0;
while (++i < 2)

System.out.println("i: " + i);

do-while

int i = 0;
do {

System.out.println("i: " + i);
} while (++i < 2)

for

int powerOfTwo = 1;
for (int i = 0; i < 16; i++)

powerOfTwo <<= 1;

Driving Iteration Statements

Inside the body of any of the iteration statements flow of the loop can
be controlled using break and continue statements. break quits the
loop without executing the rest of the statements in the loop.
continue stops the execution of the current iteration and goes back
to the beginning of the loop to begin the next iteration.

int i = 0;
while (true) {

if (i > 20)
break;

if (i++ % 7 == 0)
continue;

i += 2;
}

Driving Iteration Statements

The break and continue normally only alter the closest looping
structures. If there are nested statements, labeled break and
continue can be used to alter outer looping structures.

int i = 0;
outer:
while (true) {

while (true) {
i++;
if (i == 1)

break;
if (i == 4)

break outer;
}
while (true) {

i++;
if (i == 2)

continue;
if (i == 3)

continue outer;
}

}

The switch Statement
The switch statement is used to test an integral expression against
one or more possible cases.

char ch;
boolean whitespace;

switch (ch) {
case ' ':
case '\n':
case '\t':
case '\r':

whitespace = true;
break;

default:
whitespace = false;

}

Array

An array is a structure that holds multiple values of the same type.
The length of an array is established when the array is created. After
creation, an array is a fixed-length structure. Array identifier is
actually a reference to a true object that holds the references to the
other objects.

double gears[] = new double[5];

gears[0] = 4.624;
gears[1] = 3.231;
gears[2] = 2.893;
gears[3] = 1.052;
gears[4] = 0.962;

Sometimes it is convenient to initialize an array immediately during its
declaration.

double gears[] = {4.624, 3.231, 2.893, 1.052, 0.962};

Note: Although the new operator is not presented, the array is allocated
dynamically (compiler does it for us).

Array (cont.)

The index of array elements start from 0.

When an array contains n elements, the elements have indexes from 0
to (n-1).
Special attribute length contains the number of elements in the array.

When for example

int[] a = new int[10];
int n = a.length;

The following form of a declaration of an array are possible, they are
both equivalent:

int[] a;
int a[];

Array (cont.)

When we declare a variable such as

int[] a = new int[10];

it is a reference to an array. So after assignment

int[] b = a;

both a and b point to the same array and when we change a value of
a[0], the value of b[0] is also changed.

Multidimentional Array

Multidimentional array is in fact one-dimentional array containing
arrays as its elements.

final byte EMPTY = 0;
final byte CIRCLE = 1;
final byte CROSS = 2;
byte board[][] = {

{EMPTY, CIRCLE, CROSS},
{CIRCLE, EMPTY, CROSS},
{EMPTY, CIRCLE, EMPTY}

};
for (int i = 0; i < board.length; i++)

for (int j = 0; j < board[i].length; j++)
System.out.println("board[" + i + "][" + j + "] = " +

board[i][j]);

Note: The length is not a method. The length is a property provided by
the Java platform for all arrays.

Manipulating Arrays

The java.lang.System.arraycopy() method provides efficient
copy of data from one array into another.

char from[] = {'a', 'b', 'c', 'd', 'e', 'f'};
char to[] = new char[3];
System.arraycopy(from, 2, to, 0, to.length);

Note: Destination array must be allocated before arraycopy() is called
and must be large enough to contain the data being copied.

Method Definition

A definition of a method begins with a header that if followed by a
body of the method.

The header has the following format:

type name (args)

where

name is the name of the method

type is a return type of the method

args is a comma separated list of arguments, it may be empty

Each argument is of the form type name.

The body of a method is a block (i.e., statements enclosed between {
and }).

Method Definition (cont.)

The return type may be void if the method does not return a value.
When the return type is not void the method must return a value
using the command

return expr;

An example:

int gcd(int a, int b)
{

while (b != 0) {
int c = a % b;
a = b;
b = c;

}
return a;

}

If the return type is void the following form of the return statement
can be used:

return;

Method Invocation

A method is called using its name that is followed by a comma
separated list of parameters between paranthesis.

Any expression can be used as a parameter.

All parameters are evaluated and assigned to the arguments of the
method.
A method invocation can be used in expression. The value of the
expression corresponding to the method invocation is the return
value returned by the method.

An example:

int x, y;
x = gcd(24, 18);
y = gcd(x + 1, 36);

Object-Oriented Modeling

Object-oriented modeling is a method that models the characteristics
of real or abstract objects from application domain using classes and
objects.

Objects
Software objects are modeled after real-world objects in that
they too have state and behavior.

A software object maintains its state in one or more
variables (attributes).
A software object implements its behavior with methods
that manipulate these variables.

Messages
Software objects interact and communicate with each other by
sending messages. When object A wants object B to perform one
of B's methods, object A sends a message to object B.

Messages

Sometimes, the receiving object needs more information to know
exactly what to do. This information is passed along with the
message as parameters.

Message sending requires the following information:

the object to which the message is addressed,

the name of the method to perform,

any parameters needed by the method.

The sending of a message can have any of the following effects:

The state of the receiving object is changed.

Some other actions are performed (including sending another
messages to some objects).

Some information is returned to the sending object.

Examples of Objects

Objects in a program correspond to objects from the application
domain.

Information system of a bank: accounts, transactions, clients, other
banks

Chess playing program: chess pieces, a chessboard, positions,
moves, games, strategies

Action game: monsters, weapons, walls, doors, flying bullets, a
score counter

Drawing application: lines, rectangles, circles, arrows, text fields,
line styles, line colors

GUI toolkit: windows, buttons, menus, menu items, icons

Class
In the real world, many objects of the same kind exist. Using
object-oriented terminology, the objects are instances of a class.
A class is prototype that defines variables and methods common to all
objects of a certain kind.

Graphical representation of a class:

PSfrag replacements Fraction

numerator: int
denominator: int

add(Fraction f)
mul(Fraction f)
normalize()

class name

attributes

methods

Instances
Objects are instances of the given class. Each object has its own
identity.

PSfrag replacements

Fraction

numerator: int
denominator: int

add(Fraction f)
mul(Fraction f)
normalize()

a: Fraction

b: Fraction

c: Fraction

numerator = 2
denominator = 3

numerator = 1
denominator = 2

numerator = -6
denominator = 4

Java Class

Java defines classes using the class keyword. Definition of a class
may contain declarations of variables, definitions of methods or even
nested classes.
The order of class members is not important.

class Fraction
{

int numerator;
int denominator;

void mul(Fraction f)
{

numerator *= f.numerator;
denominator *= f.denominator;

}
}

Note: Standard convention is that class names start with an upper-case
letter and class member names (attributes and methods) start with a
lower-case letter.

Java Objects

An instance of a class can be created using new operator. It allocates
required space on the heap, provides initialization and returns
reference to the newly created instance.

Fraction a = new Fraction();

The attributes of a object can be accessed using the reference to the
object and the dot (.).

a.numerator = 2;
a.denominator = 3;

The methods of an object are accessed similarly.

Fraction b = new Fraction();
b.numerator = -6;
b.denominator = 4;

a.mul(b);

References
The references are just pointers to objects in memory. So after the
following assignment the both a and c point to the same object.

Fraction c = a;

PSfrag replacements

a

c

d

There is a special reference value null that denotes reference that
does not point to any object.

Fraction d = null;

It is an error to access attributes or methods using a reference with
the null value.

How To Destroy Objects?

There is no need to destroy objects explicitly in Java, since it uses
automatic memory management - garbage collector.

Whenever there is no reference to an object, the object can be
destroyed and the memory used by this object is freed.

The garbage collector takes into account circular dependencies.

PSfrag replacements

a

b

The this Keyword

The this keyword produces the reference to the object the method
has been called for.

PSfrag replacements

An instance

this

Examples (it is possible to omit this in most cases):

Fraction a, b;
...

this.numerator = 3; numerator = 3;
this.denominator = 2; denominator = 2;
this.add(a); add(a);
b.mul(this);

Overloading of Methods

The methods in Java can be overloaded. This means that there can be
more methods with the same name in a class. The methods must
differ in the number and types of their parameters.

The method that is actually called is chosen depending on the number
and types of parameters.

The return types of overloaded methods need not be all the same.

class Fraction {
...

void add(int x) { ... }

void add(int num, int den) { ... }

void add(Fraction f) { ... }

...
}

Encapsulation

Some attributes and methods can be marked as private. Such
attributes and methods can be accessed only from methods in the
class where they are defined. An attempt to access them from
methods in other classes produces a compile-time error.

Attributes and methods can be also marked as public. Such
attributes and methods can be accessed from any other class.

class Fraction
{

private int numerator;
private int denominator;

public void set(int num, int den) { ... }

public int getNumerator() { ... }

public int getDenominator() { ... }

...
}

Encapsulation (cont.)

Encapsulation (also information hiding) is the separation of the
external aspects of an object (accessible from other objects) from the
internal implementation details (which are hidden from other objects).

The implementation of an object can be changed without affecting the
other parts of an application that use it.

In a purely object-oriented design the attributes of an object are
always private and the only way to access them is through the
methods that manipulate them.

The use of keywords private and public allows to promote
encapsulation.

Note: If none of keywords private and public is used then the member
can be accessed from other classes. However, there are differences
between using and not using the keyword public. They will be discussed
later. There is also a keyword protected that will be discussed later too.

Initialization of an Object

After the creation of a new object (using new), all its attributes are set
to zero:

numeric values (int, long, char, float, ...) are set to 0

boolean values are set to false

references (to objects and to arrays) are set to null

It is possible to set attributes to some specified values using explicit
initialization:

class Fraction
{

int numerator = 0;
int denominator = 1;

...
}

Constructors

A more elaborate initialization of an object can be implemented using
constructors.
Constructor resemble methods, but there are some differences:

The name of a class must be used as a name of a constructor.

Constructors can not return values.

A constructor can be invoked only in the time of the creation of
an object (using new).

class Fraction {
...

Fraction(int numerator, int denominator) {
this.numerator = numerator;
this.denominator = denominator;

}
}

Fraction a = new Fraction(3, 5);
a.add(new Fraction(1, 3));

Constructors (cont.)

Some additional remarks concerning constructors follow:

Constructors may be overloaded, similarly as methods.
Constructors can be marked as public, protected and
private, similarly as methods.
When no constructor is defined then the default constructor that
does nothing is defined automatically, as if the following empty
constructor would be put in the code:

class Fraction
{

Fraction() { }
...

}

If there is explicitly defined at least one constructor, the default
empty constructor is not defined automatically.

Constructors (cont.)

Constructors can call other constructors. The keyword this can be
used for this purpose. An invocation of another constructor can be
used only as the first statement of a calling constructor's body.

class Fraction {

Fraction() {
this(0);

}

Fraction(int x) {
this(x, 1);

}

Fraction(int num, int den) {
numerator = num;
denominator = den;

}

...
}

Static Members
Variables and methods defined by a class can be of two types:
instance and class (static). Class members are distinguished from
instance ones by the static keyword.

Instance Members
Instance Variable
Any item of data that is associated with a particular object.
Each instance of a class has its own copy of the instance
variables defined in the class.
Instance Method
Any method that is invoked with respect to an instance of
a class.

Class Members
Class Variable
A data item associated with a particular class as a whole, not
with particular instances of the class.
Class Method
A method that is invoked without reference to a particular
object. Class methods affect the class as a whole, not
a particular instance of the class.

Static Members (cont.)

Instance Variables and Methods
They can be accessed only using a reference to some object.

obj.variable, obj.method()

Class (Static) Variables and Methods
The keyword static is used to denote them. There is always
exactly one copy of a static variable shared by all instances of
the given class.

static int count;
static int getCount() {...}
static void main(String[] args) {...}

Class member are usually accessed using the class name.

Test.count = 0;
int c = Test.getCount();

When they are accessed inside a given class, the class name can
be omitted.

Static Members (cont.)

An example of use of static members:

class Test {

private static int count = 0;
private int x;

public static int getCount() {
return count;

}

public Test(int x) {
this.x = x;
count++;

}

public int getValue() {
return x;

}
}

Static Members (cont.)

There is exactly one copy of the static variable count in the memory.
Each instance of the class Test has its own copy of the instance
variable x.

PSfrag replacements

Test

Test

Test
x = 5

x = 8

x = 3

3
count

class Test

Static Initializers

The static members can be initialized using static initializer of the
form

static { ... }

The code may contain more than one static initializer. They are
evaluated together with initializations of static variables in a textual
order as they appear in a source file.

Static initializers are executed only once when the class is loaded into
memory.

Static Initializers (cont.)

class StaticInitializerExample {

static int x;

static {
x = 3;
System.out.println(x);

}

static int y = 4;

static {
y = 1;
System.out.println(y);

}
...

}

produces the following output:

3
1

Inheritance

Object-oriented systems allow new classes to be defined in terms of a
previously defined class.

All variables and methods of the previously defined class, called
superclass, are inherited by subclasses. Subclasses can add some
new variables and methods.
There is a hierarchical relationship between a superclass and its
subclasses.

PSfrag replacements

Vehicle

Pick-up Truck Tractor

Inheritance (cont.)

Class Point represents a point in a plane.

Subclass ColorPoint adds information about color. It inherits
attributes x and y and the method move() from its superclass Point.

PSfrag replacements

Point

ColorPoint

x,y: int

color: int

move(dx, dy)

setColor(c)

Inheritance (cont.)

Java supports inheritance through the extends keyword. Only single
inheritance is supported, i.e. a subclass can be inherited from exactly
one superclass.

class Point {
private int x, y;

...

public void move(int dx, int dy) {
x += dx; y += dy;

}
}

class ColorPoint extends Point {
private int color;

public void setColor(int c) {
color = c;

}
}

Hierarchy of Classes

Inheritance gives rise to a whole hierarchy of classes, because other
subclasses can be inherited from subclasses of a class. Every class is
a subclass of the special class Object.

PSfrag replacements

Object

String FractionPoint

ColorPoint

Use of Subclasses

Subclasses can be used as any other classes. Attributes and methods
can be accessed as usual:

ColorPoint p = new ColorPoint();
p.setColor(3);
p.x = 45;
p.move(10, 20);

Reference to an instance of a class can also point to an instance of its
subclass. For example a reference to the class Point can point to an
instance of its subclass ColorPoint:

ColorPoint p = new ColorPoint();
Point q = p;
q.move(60, -40);
Point r = new ColorPoint();

Use of Subclasses (cont.)

However only attributes and methods declared in the class can be
accessed using reference of the given type. Attributes and methods
declared in its subclasses can not be accessed using this reference.

Point r = new ColorPoint();
r.setColor(10); // Compile error! Method setColor()

// is not defined in the class Point.

An instance of a subclass of a class can be assigned to a reference to
the given class. On the other hand, it is a compile-time error to
assign to a reference to some class an expression of type reference to
its superclass:

ColorPoint c = new ColorPoint();
Point q = c; // O.K.
ColorPoint t = q; // Compile error!

Note: Every instance of ColorPoint is also an instance of Point. There
can be instances of Point that are not instances of ColorPoint.

Cast Operator

It is possible to use cast operator to convert a reference to some class
to a reference to its subclass:

Point q = new ColorPoint();
ColorPoint t = (ColorPoint)q; // Both q and t point to

// the same object.
t.setColor(4); // O.K.
q.setColor(4); // Compile error!

The following usage is also possible:

((ColorPoint)q).setColor(4);

When the instance is not an instance of the class used in the cast
operator, a run-time error occurs (an exception is thrown).

Point q = new Point();
ColorPoint t = (ColorPoint)q; // Run-time error occurs.

The instanceof Operator

The instanceof operator determines whether a given object is an
instance of particular class or type.

The syntax is:

expr instanceof type

where expr represents an expression that evaluates to a reference
and type is a name of a class.

The result of the instanceof operator is true if the value of expr is
not null and could be cast to the type without raising an exception.
Otherwise the result is false.

Point p;
...

if (p instanceof ColorPoint) {
((ColorPoint)p).setColor(5);

}

Note: If it is clear at compile-time that the value of the expression can not
be an instance of the given class, a compile error is produced.

The final Classes

When a class is marked as final no subclasses can be inherited from
this class.
In the following example, we can not declare the class ColorPoint as
a subclass of the class Point, since the class Point is final.

final class Point
{

...
}

class ColorPoint extends Point // Compile error!
{

...
}

Polymorphism

A subclass can override methods of its superclass, i.e., it can provide
its own implementation of these methods.

class Point {
...

public void print() {
System.out.print("(" + x + "," + y + ")");

}
}

class ColorPoint extends Point {
...

public void print() {
System.out.print("(" + x + "," + y + ", color=" +

color + ")");

}
}

Polymorphism (cont.)

If an overridden method is called, the method in the subclass is
always used. The overridden method in the superclass is not
accessible from other objects.

ColorPoint c = new ColorPoint();
Point p = c;
c.print(); // The method print() defined in the class
p.print(); // ColorPoint is called in both cases.

The code that calls overridden methods does not need to be aware of
different implementations of the methods in different subclasses.

Point[] points = new Point[10];
points[0] = new ColorPoint();
points[1] = new Point();

...
for (int i = 0; i < points.length; i++) {

points[i].print();
}

The super Keyword

The super keyword can be used to access members of a class
inherited by the class in which it appears.

In particular it is the only way to access overridden methods.

class Point {
...

public void print() {
System.out.print("(" + x + "," + y + ")");

}
}

class ColorPoint extends Point {
...

public void print() {
super.print(); // calls the method print() in

// the class Point
System.out.print(", color=" + color);

}
}

The final Methods
A method can be marked as final. Such methods can not be
overridden in subclasses.

class Point {
...

public final void print() { // Marked as 'final'.
System.out.print("(" + x + "," + y + ")");

}
}

class ColorPoint extends Point {
...

public void print() { // Compile error! Can not override
// final method.

System.out.print("(" + x + "," + y + ", color=" +
color + ")");

}
}

Inheritance and Constructors

Constructors are not inherited. The subclass must define its own
constructors.
The constructors in the subclass can call a constructor of the
superclass using the keyword super.

class Point {
public Point(int x, int y) {

this.x = x; this.y = y;
}

...
}

class ColorPoint extends Point {
public ColorPoint(int x, int y, int c) {

super(x, y); // The constructor in the class
// Point is called.

color = c;
}

...
}

Inheritance and Constructors (cont.)

When no constructor of the superclass is called explicitly in the
constructors in the subclass, the constructor with no parameters is
used, as if the following construction would be put at the beginning of
the constructor:

{
super();

...
}

It is an compile-time error if the superclass does not define (either
implicitly or explicitly) the constructor with no parameters in this case.

Abstract Classes

An abstract class is an incomplete description of something; a set of
operations and attributes that, in themselves, do not fully describe an
object.

Abstract classes are used as common superclasses of some classes
and they contain common attributes and methods of these classes.

Abstract classes can not be instantiated, but their non-abstract
subclasses can.

PSfrag replacements

Figure

CirclePolygonLine

abstract class

Abstract Classes (cont.)

Abstract classes are declared with the keyword abstract.

abstract class Figure { // an abstract class
...

}

class Line extends Figure { // a non-abstract class
...

}

It is possible to use references to instances of an abstract class.

Figure a = new Line();
a.move(10, 20);

It is not possible to create instances of an abstract class.

Figure b = new Figure(); // Compile error!

Abstract Methods
Abstract classes can contain abstract methods. Such methods are
marked with the keyword abstract and have only header, their body
is replaced with a semicolon (;).

abstract class Figure {
...

abstract void draw(); // abstract method
}

Every abstract method must be implemented in non-abstract
subclasses.

class Line extends Figure {
...

void draw() { // implementation of the abstract method
... // <- draws the line

}
}

Note: Every class containing a non-implemented abstract method (either
directly or inherited) must be declared as an abstract class.

Abstract Methods (cont.)

Abstract methods are called as any other methods - the
implementation in the corresponding subclass is called.

Figure[] figures = new Figure[100];
figures[0] = new Line();
figures[1] = new Circle();
figures[2] = new Polygon();

...
for (int i = 0; i < figures.length; i++) {

figures[i].draw(); // The method draw() of the
// corresponding class is called.

}

Interfaces

An interface is a named collection of method definitions (without
implementations). An interface can also declare constants.

A definition of an interface resembles a definition of a class, but the
keyword interface is used instead of the keyword class.

interface Drawable
{

void draw(); // methods
void highlight(int mode);

int HM_DARK = 0; // constants for
int HM_LIGHT = 1; // highlight mode

}

The definitions of methods must be the same as definitions of
abstract methods except that the keyword abstract is not used.

Interfaces (cont.)

We say a class implements an interface if it provides implementations
of methods in the interface (in the same way as it implements abstract
methods).
The used syntax is illustrated in the following example.

class Line implements Drawable
{

...
public void draw() {

... // a method that actually draws the line
}

public void highlight(int mode) {
... // a method that actually highlights

// the line using the specified mode
}

}

Interfaces (cont.)

A references that point to any object implementing the given interface
can be used in the same way as references pointing to class instances.

Line l = new Line();
...

Drawable d = l;
d.draw(); // O.K.
d.highlight(Drawable.HM_DARK); // O.K.
d.move(10, 20); // Compile error. The method

// move() is not deklared in
// the interface Drawable.

Only methods declared in the interface can be called using a reference
type corresponding to this interface.

Interfaces (cont.)

An interface defines a protocol of behavior that can be
implemented by any class anywhere in the class hierarchy.

An interface declares a set of methods but does not implement
them.

A class that implements the interface agrees to implement all
the methods defined in the interface, thereby agreeing to certain
behavior.

There is a hierarchy of interfaces similar to hierarchy of classes.
We talk about superinterfaces and subinterfaces.

interface DrawableFull extends Drawable
{

void fill(int color);
}

Interfaces (cont.)

A class can implement more than one interface. Names of
multiple interfaces are separated by comma (,).

class Polygon extends Figure implements
Drawable, Rotating {

...

Methods declared in an interface are implicitly public and
abstract. It is not possible to change this.

Attributes declared in an interface are implicitly public, static
and final, i.e., they represent constants. It is not possible to
change this.

When a class implements an interface, it is essentially signing a
contract. Either the class must implement all the methods
declared in the interface and its superinterfaces, or the class
must be declared abstract.

Interfaces (cont.)

The most significant differences between interfaces and abstract
classes:

An interface cannot implement any methods, whereas an
abstract class can.

An interface cannot declare any static methods, whereas an
abstract class can.

An interface cannot declare instance variables, whereas an
abstract class can.

An interface cannot declare non-final static attributes, whereas
an abstract class can.

A class can implement many interfaces but can have only one
superclass.

An interface is not part of the class hierarchy - unrelated classes
can implement the same interface.

The final Attributes

Constant values can be declared using the keyword final.

final int NUMBER = 10;

We can assign a value to final attributes and (local) variables only in
their declarations or in constructors. An attempt to assign them a
value in normal methods results in a compile-time error.

NUMBER = 5; // Compile error!

A final attribute is usually declared as static, since it is not
necessary to have a copy of the same value in all instances, and one
common copy is sufficient.

static final int NUMBER = 10;

Note: Names of constant values are by convention formed from
upper-case letters and underscores (_).

The final Attributes (cont.)

One common usage of final attributes is to use them for
representation of possible values from some finite set of values -
enumeration of these values. To each possible element of the set we
assign some arbitrary integer value. In program we always use the
assigned symbolic names instead of integer values.

In this case names of attributes representing values from the set share
a common prefix.

For example in a chess-playing program we can represent different
pieces using the following declarations.

// chess pieces
public static final int P_NONE = 0,

P_KING = 1,
P_QUEEN = 2,
P_BISHOP = 3,
P_KNIGHT = 4,
P_ROOK = 5,
P_PAWN = 6;

Packages

To make classes easier to find and to use, to avoid naming conflicts,
and to control access, programmers bundle groups of related classes
and interfaces into packages.

A package is a program module that contains classes, interfaces and
other packages (subpackages).

Each package has a name:

a single identifier - a name of a top level package

of the form Q.Id, where Q is a name of a package and Id is an
identifier - a name of a subpackage

Examples of package names:

points
java.lang
com.sun.security
drawing.figures

Packages (cont.)

A package to which a class or an interface belongs is specified at the
beginning of the source file containing this class or interface using
the following syntax, where name is the name of the package:

package name;

For example, a file Line.java may look like this:

package drawing.figures;

class Line extends Figure {
...

}

This specifies the class Line that belongs to the package
drawing.figures.

When no package is specified at the beginning of the source file, the
class or interface defined in this file belongs to a special unnamed
package.

Canonical Names

Each class or interface has a fully qualified (canonical) name that
specifies also the package to which it belongs.

For example, the fully qualified name of the previously defined class
Line is:

drawing.figures.Line

It is possible to use the same name for two classes or interfaces as
long as they belong to different packages (and so they have different
canonical names).
For example, can define another class Line in a package
net.connections with the canonical name:

net.connections.Line

The canonical name of a class or interface that belongs to the
unnamed package is the name of this class or interface, for example:

Line

Canonical Names (cont.)

We can always use a fully qualified name of a class or interface when
we refer to this class or interface:

drawing.figures.Line line = new drawing.figures.Line();

When we use a simple name (i.e., when we do not use the canonical
name) we refer to a class or interface in the current package:

Line line = new Line();

A package may not contain two members of the same name, or a
compile-time error results. For example:

The package drawing.figures cannot contain other class or
interface named Line.
The package drawing.figures cannot contain a subpackage
Line.
The package drawing cannot contain a class or interface named
figures.

Public Classes and Interfaces

Only classes or interfaces declared public can be accessed in other
packages.

For example, the class drawing.figures.Line declared this way can
be accessed in all packages:

package drawing.figures;

public class Line extends Figure {
...

}

If it would be declared the following way then it can be accessed only
in (classes and interfaces in) the package drawing.figures:

package drawing.figures;

class Line extends Figure {
...

}

Hierarchy of Packages

The hierarchical naming structure for packages is intended to be
convenient for organizing related packages, but has no other
significance.

For example there is no special access relationship between classes
defined in the following packages:

drawing.figures
drawing.figures.colors
drawing.menu

Package names correspond to directories in a file system. For example
the class drawing.figures.Line should be stored in a file named

drawing/figures/Line.java (on Unix)

resp.

drawing\figures\Line.java (on MS Windows)

Note: Files containing classes from the unnamed package should be
stored in the current working directory.

Import Declarations

It is always possible to refer to classes and interfaces from other
packages using their canonical names.

It is possible to use import declarations to import classes and
interfaces from other packages and to refer to them using simple
names.

The are two types of import declarations:

single type declarations - imports one class or interfaces

import drawing.figures.Line;

import on demand declarations - imports all public classes and
interfaces from the given package

import drawing.figures.*;

A source file can contain any number of import declarations.

Import Declarations (cont.)

The file drawing/figures/Line.java contains:

package drawing.figures;

public class Line extends Figure {
...

}

The file drawing/menu/Commands.java contains:

package drawing.menu;

import drawing.figures.Line; // single type import

class Commands {
public Line createLine() { // Line refers to the class

Line line = new Line(); // drawing.figures.Line
...

}
...

}

Import Declarations (cont.)

The file drawing/figures/Line.java contains:

package drawing.figures;

public class Line extends Figure {
...

}

The file drawing/menu/Commands.java contains:

package drawing.menu;

import drawing.figures.*; // on demand import

class Commands {
public Line createLine() { // Line refers to the class

Line line = new Line(); // drawing.figures.Line
...

}
...

}

Import Declarations (cont.)

When a source file contains a single class (or interface) name then the
definition of the class is found using the following procedure:

If the class is defined in the source file or if it is imported using
single type import declaration, the corresponding definition is
used.

If the class with the given name is defined in the same package
(but in other file), that definition is used.

If the class is defined in some package imported using on
demand import declaration, that definition is used.

Otherwise a compile-time error results.

Note: Only public classes and interfaces can be imported from other
packages.

Import Declarations (cont.)

Some remarks:

When a class defined in a source file has the same single name
as the class imported using single type import declaration, a
compile-time error results.
So the following program causes a compile time error.

package drawing.menu;

import drawing.figures.Line;

class Line { // Compile error!
...

}

It is also not possible to use more than one single type import
declaration with the same single name of a class or interface:

import drawing.figures.Line;
import net.connections.Line; // Compile error!

Import Declarations (cont.)

When a source file contains single type import declaration and
there is a class with the same single name defined in the same
package, but in other file, then the class specified in the import
declaration is used.

It is a compile-time error when a single name is used to refer to
a class that is defined in two or more packages imported using
on demand import declarations:

import drawing.figures.*; // contains class Line
import net.connections.*; // contains class Line

...
Line line = new Line(); // Compile error!

// Fully qualified
// name must be used.

On demand import declarations do not conflict with single type
import declarations or with classes defined in the given package.

Source Files

A Java source file (also called compilation unit) has the following
structure:

package declaration

import declarations

type declarations

The ordering of these parts is mandatory. Each of them is optional.

Package declaration is always of the form

package name;

where name is the (canonical) name of the package.

Import declarations is a sequence of any number of import
declarations (single type and on demand).

Type declarations is a sequence of any number of class and
interface definitions.

Source Files (cont.)

When a source file contains a public class or interface named X,
the name of the source file must be X.java.

When a source file contains a class or interface named X that is
referred from other source files, the name of the source file
must be X.java

The above rules mean that a file may contain at most one class
or interface that is either public or that is referred from other
source files.

When source files are compiled, a file X.class is created for
each class or interface named X.

Names of directories must correspond to names of packages.

Ant

When we have a program consisting of many source files, we usually
do not run compiler manually, but use some special tool for it.
A standard tool used for this purpose for Java programs is called Ant.

Dependencies between files can be specified using a special
language.

It is not always necessary to compile all source files, but only
some of them. Ant automatically figures out which files should
be compiled and calls compiler on them.

Ant is not a part of JDK, but can be downloaded from
http://ant.apache.org.

Most of development environments use Ant internally for
management of projects.

Package Names

Packages java and javax and their subpackages are reserved for
standard classes, so no classes or interfaces should be defined by a
user in these packages.

A short overview of the most important standard packages:

java.lang - fundamental classes for Java programming language

java.util - miscellaneous utility classes (abstract data types,
manipulation with date and time, ...)

java.io - classes for input and output from and to files and for
manipulation with files

java.net - classes for network communication

java.awt - Abstract Window Toolkit - classes for creating user
interfaces and for painting graphics and images

java.applet - classes for creating applets

javax.swing - modern user interface Swing

javax.sound - classes for working with sound

Package Names (cont.)

Some remarks:

Classes and interfaces from package java.lang are always
automatically imported as if the following import declaration
would be used:

import java.lang.*;

By convention package names contain only lower-case letters.

Package Names (cont.)

When some packages are widely distributed the following convention
is suggested:

We create a unique package name from an Internet domain name
belonging to an organization that produces the package by
reversing this domain name component by component.
For example from a domain name

mycompany.com

we create a package name

com.mycompany

All other packages are then created as subpackages of this
package.

This convention allows to avoid package names conflicts.

Access Control

Access to a member of a class can be specified using one of the
keywords public, protected or private, or it may not be specified
(default access):

public - it can be accessed from any class

protected - it can be accessed from any subclass and from any
class in the same package

(default) - it can be accessed from any class in the same
package

private - it can be accessed only from the class where it is
defined.

When we override a method in a subclass it must be declared with the
same or more permissive access than the method in the superclass.

Classes Without Instances

The standard way how to define a class such that it is not possible to
create instances of this class is:

to declare a constructor of no arguments and make it private

never invoke this constructor

declare no other constructors

Class of this form usually contains class methods and variables.

An example of such class is the class java.lang.Math containing
standard mathematical functions:

public final class Math {

private Math() { } // never instantiate this class

... // class variables and methods
}

Modifiers

A modifier specifies some special property of a class, an interface, a
method, an attribute, or a constructor.
All possible modifiers in Java are:

public protected private
static abstract final
native synchronized transient
volatile strictfp

Modifiers are used in front of a declaration.

The ordering of modifiers is not important when more than one
modifier is used.

Some modifiers can be used only in some contexts.

At most one of keywords public, protected and private can
be used in one declaration.

It is an error to use the same modifier more than once.

Modifiers (cont.)

Class modifiers:
public abstract final strictfp

Field (attribute) modifiers:
public protected private
static final transient volatile

Method modifiers:
public protected private abstract static
final synchronized native strictfp

Constructor modifiers:
public protected private

Interface modifiers:
public

Class java.lang.Object

Class java.lang.Object is a common superclass of all classes.

All objects, including arrays, inherit methods of this class:

equals(Object obj) - tests if two objects are equal

clone() - creates a copy of this object

toString() - returns a string representation of the object

hashCode() - returns a hash code value for the object

getClass() - returns information about the class of the object

finalize() - called by the garbage collector before the
memory is freed

wait(), notify(), notifyAll() - for synchronization of
threads

References

There are three reference types in Java:

class references

interface references

array references

There are two types of objects in Java:

class instances

arrays

References are pointers to objects. They can have null value and
there can be many references to the same object.

The class java.lang.Object is a superclass of all other class. A
variable of type Object can hold a reference to an instance of a class
or to an array.

int[] a = { 3, 1, 5 };
Object o = a;
Object p = new Object[10];

References (cont.)

It is possible to compare two references using operators == and !=:

The result of == is true if both references point to the same
object or if they are both null.

The result of == is false otherwise.

The operator != works as a negation of ==.

A compile-time error occurs if it is impossible to convert the
type of either operand to the type of the other by a casting
conversion.

Point a = new Point(10, 20);
Point b = new Point(10, 20);
System.out.println(a == b); // prints 'false'
Object c = a;
System.out.println(a == c); // prints 'true'

Method equals()

The method

public boolean equals(Object obj)

defined in the class java.lang.Object can be used to compare two
different object if they are the same.
This method can be overridden in subclasses. If it is not overridden it
behaves as if the test

(this == obj)

was used.

The method equals() implements an equivalence relation:
reflexive - x.equals(x) should return true,
symmetric - if x.equals(y) then also y.equals(x),
transitive - if x.equals(y) and y.equals(z) then also
x.equals(z),
consistent - x.equals(y) should return always the same value,
if objects pointed to by x and y has not changed,
x.equals(null) should return false.

Method equals() (cont.)

class Point {
private int x, y;

public boolean equals(Object obj) {
if (!(obj instanceof Point)) return false;
Point p = (Point)obj;
return (x == p.x && y == p.y);

}

public Point(int x, int y) {
this.x = x; this.y = y;

}
}

Point a = new Point(10, 20);
Point b = new Point(10, 20);
Point c = new Point(30, 20);
System.out.println(a == b); // prints 'false'
System.out.println(a.equals(b)); // prints 'true'
System.out.println(a.equals(c)); // prints 'false'

Copying Objects

The clone() method is intended for creation of a copy of an object.
The simplest way to make your class cloneable, is to add
implements Cloneable to class's declaration. For some classes the
default behavior of Object's clone() method works just fine. Other
classes need to override clone to get correct behavior.

Shallow Copy
A clone of an original object is created only. All instance
variables of the clone have the same values as the ones of the
original, i.e. if a variable holds reference to an object, the
original and the copy refer to the same object.
Deep Copy
Copies of an original object and all its instance variables are
created. Then, any modification of the original does not affect
its copy and vice versa.

Note: The clone() should never use new to create the clone and should
not call constructors. Instead, the method should call super.clone(),
which creates an object of the correct type and allows the hierarchy of
superclasses to perform the copying necessary to get a proper clone.

Copying Objects (cont.)

PSfrag replacements

shallow copy

deep copy

Garbage Collection

When garbage collector is ready to release a memory used for an
object, it will first call finalize() method, and only then the memory
is reclaimed. Usage of finalize() gives the ability to perform some
important cleanup at the time of garbage collection.

protected void finalize()

If there is some activity that must be performed before an objects is
no longer need, the activity must be performed by programmer. Java
has no destructor or similar concept, so an ordinary method
performing this cleanup must be created.

Note: It is not good idea to rely on finalize() being called, and
separate “cleanup” functions should be created and called explicitly.

Garbage collection can be characterized as follows:
garbage collection is not destruction,
some objects might not get garbage-collected,
garbage collection is only about memory.

Strings

Strings are sequences of characters (primitive type char).

There are two classes in Java that can be used to represent strings
(both are from the package java.lang):

String

StringBuffer

All string literals, such as "abc", are represented as instances of the
class String.

Strings are constants, their values cannot be changed after they are
created.
The class StringBuffer supports mutable strings.

Strings in Java are not arrays of characters. This means that char[] is
not String and vice versa.

However, character arrays can be used when we work with strings.
Also both classes String and StringBuffer use character arrays in
their internal implementation.

Class String

The easiest way how strings can be created is to use string literals:

String s = "abc";

Notice that no operator new is used in this case. The object of the
class String is created automatically in this case.

The class String has many different constructors:

String()

String(String original)

String(StringBuffer buffer)

String(char[] value)

String(char[] value, int offset, int count)

String(byte[] bytes, String charsetName)

. . .

Class String (cont.)

char data[] = {'a', 'b', 'c'};
String s = new String(data);

char data2[] = {'a', 'b', 'c', 'd', 'e', 'f'};
String t = new String(data2, 2, 3); // t = "cde";

The most important methods in the class String:

int length() - returns the length of the string

char charAt(int index) - returns the character at the
specified index

boolean equals(Object obj) - compares two strings

String s = "abcdef";
System.out.println(s.length()); // prints '6'
System.out.println(s.charAt(5)); // prints 'f'
System.out.println(s.equals("abcdef")); // prints 'true'
System.out.println(s.equals("hello")); // prints 'false'

Class String (cont.)

Methods that transform strings to arrays:

void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)

char[] toCharArray()

byte[] getBytes(String charsetName)

byte[] getBytes()

Methods for comparison of strings:

boolean equals(Object obj)

boolean equalsIgnoreCase(String str)

int compareTo(String str)

int compareToIgnoreCase(String str)

boolean contentEquals(StringBuffer sb)

Note: Methods compareTo() and compareToIgnoreCase() return a
negative integer, zero, a positive integer if the the specified string is
greater than, equal to, or less than this string.

Class String (cont.)

Methods for searching for a character in a string:

int indexOf(int ch)

int indexOf(int ch, int fromIndex)

int lastIndexOf(int ch)

int lastIndexOf(int ch, int fromIndex)

Methods for searching for a substring in a string:

int indexOf(String str)

int indexOf(String str, int fromIndex)

int lastIndexOf(String str)

int lastIndexOf(String str, int fromIndex)

Note: The value -1 is returned if the searched character or substring is
not found.

Class String (cont.)

The methods for obtaining substrings:

String substring(int beginIndex)

String substring(int beginIndex, int endIndex)

String s = "abcdef";
System.out.println(s.substring(2,5)); // prints 'cde'

The methods for comparison of substrings:

boolean regionMatches(boolean ignoreCase, int toffset, String
other, int ooffset, int len)

boolean startsWith(String prefix, int offset)

boolean startsWith(String prefix)

boolean endsWith(String suffix)

Class String (cont.)

Other methods that manipulate strings:

String toLowerCase()

String toUpperCase()

String concat(String str) - concatenates the specified string to
the end of this string

String replace(char oldChar, char newChar) - replaces all
occurrences of oldChar with newChar

String trim() - removes leading and trailing whitespace

There are also static methods called valueOf() that transform
different types of values to strings:

static String valueOf(boolean b)

static String valueOf(char c)

static String valueOf(int i)

. . .

Strings - Example

public class Filename {
private String fullPath;
private char pathSeparator, extensionSeparator;

public Filename(String str, char sep, char ext) {
fullPath = str;
pathSeparator = sep;
extensionSeparator = ext;

}

public String getExtension() {
int dot = fullPath.lastIndexOf(extensionSeparator);
return fullPath.substring(dot + 1);

}

public String getFilename() {
int dot = fullPath.lastIndexOf(extensionSeparator);
int sep = fullPath.lastIndexOf(pathSeparator);
return fullPath.substring(sep + 1, dot);

}

Strings - Example

public String getPath() {
int sep = fullPath.lastIndexOf(pathSeparator);
return fullPath.substring(0, sep);

}
}

The following code illustrates usage of Filename:

Filename myHomePage = new Filename("/home/mem/index.html",
'/', '.');

System.out.println("Extension = " + myHomePage.getExtension());
System.out.println("Filename = " + myHomePage.getFilename());
System.out.println("Path = " + myHomePage.getPath());

Produced output:

Extension = html
Filename = index
Path = /home/mem

Class StringBuffer

The class StringBuffer implements a mutable sequence of
characters, the length and content of the sequence can be changed
through certain method calls.

The most important methods:

int length()

void setLength(int newLength)

char charAt(int index)

void setCharAt(int index, char ch)

int capacity()

void ensureCapacity(int minimumCapacity)

H e l l o w ro l !
0 1 3 5 6 102 4 7 8 9 12 13 14 15 16 17 1811

, d

PSfrag replacements

length()=13 capacity()=19

Class StringBuffer (cont.)

The constructors:

StringBuffer()

StringBuffer(int length)

StringBuffer(String str)

The most important methods used to modify a string buffer are:

append - adds characters at the end of the buffer,

insert - adds characters at a specified point.

StringBuffer b = new StringBuffer("abcd");
b.append("ef"); // 'b' contains 'abcdef'
b.insert(3, "ghi"); // 'b' contains 'abcghidef'

The contents of a string buffer can be transformed into a string using
the toString() method:

String s = b.toString(); // 's' contains 'abcghidef'

Class StringBuffer (cont.)

Methods append and insert are overloaded so as to accept data of
any type:

StringBuffer append(String str)

StringBuffer append(StringBuffer sb)

StringBuffer append(Object obj)

StringBuffer append(char[] str)

StringBuffer append(boolean b)

StringBuffer append(char c)

StringBuffer append(int i)

StringBuffer append(double d)

. . .

StringBuffer insert(int offset, String str)

StringBuffer insert(int offset, char[] str)

. . .

Class StringBuffer (cont.)

It is also possible to delete characters:

StringBuffer delete(int start, int end)

StringBuffer deleteCharAt(int index)

Other methods that manipulate string buffers:

StringBuffer replace(int start, int end, String str)

String substring(int start)

String substring(int start, int end)

The methods for searching in string buffers:

int indexOf(String str)

int indexOf(String str, int fromIndex)

int lastIndexOf(String str)

int lastIndexOf(String str, int fromIndex)

Operator +

Operator + can be used for concatenation of strings:

String a = "Hello";
String b = ", world";
String c = a + b; // c = "Hello, world"

It is also possible to use +=:

String a = "Hello";
a += ", world"; ; // a = "Hello, world"

If at least one of operands of + is a string, the other operand is
transformed into a string automatically:

String a = "Result=" + (3 + 2) ; // a = "Result=5"
String b = "Result=" + 3 + 2 ; // b = "Result=32"

Operator + (cont.)

String buffers are used by the compiler to implement the string
concatenation operator +. For example, the code:

String x;
x = "a" + 4 + "c";

is compiled to the equivalent of:

String x;
x = new StringBuffer().append("a").append(4).append("c")

.toString();

It is usually more efficient to manipulate a StringBuffer then to
manipulate String. A new instance of String is created after every
operation.

StringBuffer - Example

class StringBufferDemo {
static String toString(int[] a) {

StringBuffer buf = new StringBuffer("{ ");
for (int i = 0; i < a.length; i++) {

if (i > 0) buf.append(", ");
buf.append(a[i]);

}
buf.append(" }");
return buf.toString();

}

public static void main(String[] args) {
int[] a = { 81, 32, 53, 21, 82 };
String s = toString(a);
System.out.println(s);

}
}

Output: { 81, 32, 53, 21, 82 }

Primitive Type Wrappers

Each primitive type has its object wrapper. Although usage of
primitive types is more efficient, there are some situations where
application of their object wrappers is either more convenient or just
inevitable.

Primitive type Size [bits] Wrapper class
boolean - Boolean
char 16 Character
byte 8 Byte
short 16 Short
int 32 Integer
long 64 Long
float 32 Float
double 64 Double
void - Void

Instances of wrapper classes represent immutable values.

Primitive Type Wrappers (cont.)

There is a common abstract superclass of Byte, Short, Integer,
Long, Float and Double called Number.

Wrapper classes contain also many useful static methods for
manipulation with values of the given primitive type:

methods that transform the values of the primitive type to
strings

methods that transform strings to the given primitive type

Wrapper classes for numeric types also contain static constants
MIN_VALUE and MAX_VALUE representing the minimal and maximal
value of the given numeric type.

short x = Short.MIN_VALUE; // x = -32768

Class Character

Class Character contains many static methods for testing if a
character belongs to the given category of characters:

static boolean isLowerCase(char ch)

static boolean isUpperCase(char ch)

static boolean isDigit(char ch)

static boolean isDefined(char ch)

static boolean isLetter(char ch)

static boolean isLetterOrDigit(char ch)

static boolean isSpaceChar(char ch)

static boolean isWhitespace(char ch)

static boolean isISOControl(char ch)

. . .

Java uses 16-bit character encoding called Unicode. More information
about Unicode can be found at http://www.unicode.org.

ASCII Table

The first 128 characters of Unicode are the same as in the ASCII table.
ASCII - American Standard Code of Information Interchange

0 NUL 16 DLE 32 48 0 64 @ 80 P 96 ` 112 p
1 SOH 17 DC1 33 ! 49 1 65 A 81 Q 97 a 113 q
2 STX 18 DC2 34 " 50 2 66 B 82 R 98 b 114 r
3 ETX 19 DC3 35 # 51 3 67 C 83 S 99 c 115 s
4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 d 116 t
5 ENQ 21 NAK 37 % 53 5 69 E 85 U 101 e 117 u
6 ACK 22 SYN 38 & 54 6 70 F 86 V 102 f 118 v
7 BEL 23 ETB 39 ' 55 7 71 G 87 W 103 g 119 w
8 BS 24 CAN 40 (56 8 72 H 88 X 104 h 120 x
9 HT 25 EM 41) 57 9 73 I 89 Y 105 i 121 y
10 LF 26 SUB 42 * 58 : 74 J 90 Z 106 j 122 z
11 VT 27 ESC 43 + 59 ; 75 K 91 [107 k 123 {
12 FF 28 FS 44 , 60 < 76 L 92 \ 108 l 124 |
13 CR 29 GS 45 - 61 = 77 M 93] 109 m 125 }
14 SO 30 RS 46 . 62 > 78 N 94 ^ 110 n 126 ~
15 SI 31 US 47 / 63 ? 79 O 95 _ 111 o 127 DEL

Manipulation With Characters

Some examples of manipulation with characters. Notice how
properties of ASCII are used.

Transformation of a decimal digit to the numerical value:

static int decToNum(char c) {
if (c >= '0' && c <= '9') return c - '0';
return -1;

}

Transformation of a hexadecimal digit to the numerical value:

static int hexToNum(char c) {
if (c >= '0' && c <= '9')

return c - '0';
else if (c >= 'A' && c <= 'F')

return c - 'A' + 10;
else if (c >= 'a' && c <= 'f')

return c - 'a' + 10;
return -1;

}

Class Character (cont.)

Class Character contains static methods for transformation of
characters to lower-case and upper-case:

static char toLowerCase(char ch)

static char toUpperCase(char ch)

These methods work for all Unicode characters.

Simplified version of toLowerCase() working only on ASCII
characters could look like this:

static char toLowerCase(char c) {
if (c >= 'A' && c <= 'Z') {

return (char)(c - 'A' + 'a');
}
return c;

}

Class Integer

Class Integer contains the following static method for
transformation of integer values to strings:

static String toString(int i, int radix)
static String toString(int i)
static String toOctalString(int i)
static String toHexString(int i)
static String toBinaryString(int i)

Class Long contains similar methods that work with type long.

We can use the following methods to transform a string into an
integer:

static int parseInt(String s, int radix)
static int parseInt(String s)
static Integer valueOf(String s, int radix)
static Integer valueOf(String s)
static Integer decode(String nm)

Class Number
The abstract class Number defines the following (instance) methods:

byte byteValue()
short shortValue()
int intValue()
long longValue()
float floatValue()
double doubleValue()

Each subclass of Number (Byte, Short, Integer, Long, Float,
Double) implements these methods.

Subclasses of Number implemet static methods for transformation of
strings into the corresponding primitive type:

Class Byte:
static byte parseByte(String s, int radix)
static byte parseByte(String s)

. . .

Classes Float and Double

Classes Float and Double contain static fields representing some
special values of types float and double:

NaN - Not-a-Number

NEGATIVE_INFINITY

POSITIVE_INFINITY

These values can be used as any other float or double values.

There are also static methods that allow to test these special values:

static boolean isNaN(float v)

static boolean isInfinite(float v)

static boolean isNaN(double v)

static boolean isInfinite(double v)

Class Math

The class java.lang.Math contains methods for performing basic
numeric operations such as:

exponential

logarithm

square root

trigonometric functions

The class Math contains two important static constants:

E - Euler number, the base of the natural logarithms (2.71828...)

PI - number pi (3.14159...)

It is not possible to create instances of Math.

All methods are static.

Class Math (cont.)

Overview of methods:

static double exp(double a)

static double log(double a)

static double sqrt(double a)

static double pow(double a, double b)

static double sin(double a)

static double cos(double a)

static double tan(double a)

static double asin(double a)

static double acos(double a)

static double atan(double a)

static double atan2(double y, double x)

static double toRadians(double angdeg)

static double toDegrees(double angrad)

Class Math (cont.)

Other methods:

static double ceil(double a)

static double floor(double a)

static double rint(double a)

static int round(float a)

static long round(double a)

static double random()

static int abs(int a)

static long abs(long a)

static float abs(float a)

static double abs(double a)

static int max(int a, int b)

static int min(int a, int b)

. . .

Class Math (cont.)

Example of usage of mathematical functions:

double start = 0.0;
double end = Math.PI * 2.0;
double step = 0.05;
for (double x = start; x <= end; x += step) {

double y1 = Math.sin(x);
double y2 = Math.cos(x);
System.out.print("x=" + x);
System.out.print(" sin(x)=" + y1);
System.out.println(" cos(x)=" + y2);

}

One possible way how numbers can be rounded (except using the
method round()):

double a;
...

int i = (int)(a + 0.5);

Method main()

At least one class in a program must contain the static method

public static void main(String[] args)

Such classes can be used to start programs:

$ java MyClass

The method main() usually creates instances of other classes and
calls their methods.

An argument to the method main() is an array of strings containing
command line arguments. For example when we use

$ java MyClass Hello World

in the method main() in the class MyClass we have

args.length = 2
args[0] = "Hello"
args[1] = "World"

Program Exit

The program exits when the method main() is finished.

Note: In fact, it is more complicated. Generally, program exits when all
threads are finished.

It is also possible to use the method exit() in the class
java.lang.System to exit program:

System.exit(0);

The argument of exit() is a a status code. By convention, a nonzero
status code indicates abnormal termination.

System.exit(1); // an error occured

Exceptions

The Java programming language provides a mechanism known as
exceptions to help programs report and handle errors:

When an error occurs, the program throws an exception.

The normal flow of the program is interrupted and the runtime
environment attempts to find an exception handler, a block of
code that can handle a particular type of error.

Exception - an event that occurs during the execution of a program
that disrupts the normal flow of instructions.
An object containing an information about the event is also
called an exception.

Exceptions - Example

An example of usage of exceptions:

public static void main(String[] args) {
try {

int c = Integer.parseInt(args[0]);
while (c-- > 0) System.out.println(args[1]);

}
catch (ArrayIndexOutOfBoundsException e) {

System.err.println("Missing argument");
}
catch (NumberFormatException e) {

System.err.println("\"" + args[0] +
"\" isn't an integer");

}
}

Usage: java Example 3 xyz

Exceptions - Motivation

Let us consider a method that reads an entire file into memory. In
pseudo-code it looks like this:

readFile {
open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

}

What happens if the file can't be opened?

What happens if the length of the file can't be determined?

What happens if enough memory can't be allocated?

What happens if the read fails?

What happens if the file can't be closed?

Exceptions - Motivation (cont.)

errorCodeType readFile {
initialize errorCode = 0;
open the file;
if (theFileIsOpen) {

determine the length of the file;
if (gotTheFileLength) {

allocate that much memory;
if (gotEnoughMemory) {

read the file into memory;
if (readFailed) {

errorCode = -1;
}

} else {
errorCode = -2;

}
} else {

errorCode = -3;
}

. . .

Exceptions - Motivation (cont.)

. . .
close the file;
if (theFileDidntClose && errorCode == 0) {

errorCode = -4;
} else {

errorCode = errorCode and -4;
}

} else {
errorCode = -5;

}
return errorCode;

}

Exceptions - Motivation (cont.)

readFile {
try {

open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

} catch (fileOpenFailed) {
doSomething;

} catch (sizeDeterminationFailed) {
doSomething;

} catch (memoryAllocationFailed) {
doSomething;

} catch (readFailed) {
doSomething;

} catch (fileCloseFailed) {
doSomething;

}
}

Exception Objects

When an error occurs in Java:

An exception object is created, it contains information about the
exception (its type, the state of the program when the error
occurred, ...).

Normal flow of instructions is disrupted.

The runtime system finds some code to handle the error.

An exception object is always an instance of some subclass of the
class java.lang.Throwable. There are many standard exception
classes and it is possible to define own exception classes.

Creating an exception and handing it to the runtime system is called
throwing an exception.

The code that handles the exception is called an exception handler.
The exception handler is said to catch the exception.

Which exception handler is chosen depends on the type of the
exception object.

Catching Exceptions

There are three main components of a code that catches exceptions:

the try block

the catch blocks

the finally block

The syntax is:

try {
. . .

} catch (. . .) {
. . .

} catch (. . .) {
. . .

} finally {
. . .

}

A try block must be accompanied by at least one catch block or one
finally block.

The try Block

In general a try block looks like this:

try {
. . . // Java statements

}

A try block is said to govern the statements enclosed within it and
defines the scope of any exception handlers.

If an exception occurs within the try statement, that exception is
handled by the appropriate exception handler associated with this try
statement.

There can be any number of the catch blocks, but at most one
finally block.

The catch Block(s)

The general form of a catch block is:

catch (SomeThrowableObject variableName) {
. . . // Java statements

}

A class SomeThrowableObject is a subclass of java.lang.Throwable.
It declares the type of exceptions the handler can handle.

The variable variableName is the name by which the handler can
refer to the exception.

This is a declaration of a local variable variableName. The scope of
this variable is the body of the catch block.

The variable variableName can be used as any other local variable:

variableName.getMessage();

Note: The conventional name used for these types of variables is e.

The catch Block(s) (cont.)

The catch block contains a series of statements that are executed
when the exception handler is invoked:

If no exception occurs in the try block, all its catch blocks are
skipped and the execution continues after them.

If an exception of type T occurs in the try block and there is a
catch block handling exceptions of type T (or its superclass),
then this block is executed.
If there is more than one handler that handles exceptions of
type T then the first one matching handler is used.

If there is no such handler, the runtime system looks for some
other enclosing try statement and its handlers.

Note: Exceptions can be thrown everywhere, even inside the catch
blocks.

The catch Block(s) (cont.)

The typical use of exception handlers:

try {
. . .

} catch (ArithmeticException e) {
System.out.println("Caught ArithmeticException: " +

e.getMessage());
} catch (IOException e) {

System.out.println("Caught IOException: " +
e.getMessage());

}

The finally Block

The finally block provides a mechanism that allows to clean up the
state of a method regardless of what happens within the try block.

Statements in the finally block are performed after:

the try block exited normally,

an exception occurred in the try block and was caught by some
exception handler,

an exception occurred in the try block and was not caught.

try {
. . . // opens a file and writes to it

} finally {
if (file != null) {

file.close();
}

}

Exceptions and Methods

A method need not catch all exceptions, it can also throw exceptions
to its caller.
If an exception of type T can occur in a method and the method does
not catch the exception of type T, then we must specify that the
method can throw an exception of type T.

To specify this, we add a throws clause to the header of the method:

public void readFile(String filename) throws IOException
{

. . .
}

If a method can throw more than one type of exception we must
specify all of them:

public Connection openConnection(Address addr)
throws ConnectException, UnknownAddrException {

. . .

Exceptions and Methods (cont.)

Any exception that can be thrown by a method is part of the method's
public programming interface: callers of a method must know about
the exceptions that a method can throw to intelligently and
consciously what to do about those exceptions.

Note: When a method is overridden in a subclass, it must not throw
exceptions not specified in the superclass.

There are two types of exceptions:

runtime exceptions - exceptions that can occur almost
everywhere, they are usually produced directly by the runtime
system (arithmetic exceptions, pointer exceptions, indexing
exceptions).

checked exceptions - all other exceptions (including user
defined exceptions).

The compiler checks that checked exceptions are either caught or
specified. Runtime exceptions need not be caught or specified.

Hierarchy of Exceptions

PSfrag replacements

Throwable

Error Exception

RuntimeException

Hierarchy of Exceptions (cont.)

Subclasses of Throwable:

Subclasses of Error - exceptions of that indicates serious
problems that a reasonable application should not try to catch.

Subclasses of Exception - “normal” exceptions that a reasonable
application might want to catch. User-defined exceptions should
be subclasses of Exception (but not of RuntimeException).

Subclasses of RuntimeException - runtime exceptions, usually
produced by the runtime system. An application might want to
catch them.

Note: The classes Throwable, Error, Exceptions, and RuntimeException
are from the package java.lang.

It is not necessary to catch or specify subclasses of Error and
RuntimeException. All other exceptions must be either caught or
specified.

Hierarchy of Exceptions (cont.)

It is convenient to hierarchize exceptions using inheritance. This
approach enables:

grouping of error types

error differentiation.

public class StackException extends Exception {
public StackException(String message) {

super(message);
}

}

public class EmptyStackException extends StackException {
public EmptyStackException() {

super("The stack is empty.");
}

}

Throwing an Exception

Any Java code can throw an exception using the throw statement:

throw someThrowableObject;

The throw statement requires a single argument - a throwable object.

An example of throwing an exception in an implementation of a stack:

public Object pop() throws EmptyStackException {
if (size == 0) {

throw new EmptyStackException();
}
Object obj = objectAt(size - 1);
setObjectAt(size - 1, null);
size--;
return obj;

}

Class Throwable

The constructors of java.lang.Throwable:

Throwable()

Throwable(String message)

Throwable(String message, Throwable cause)

Throwable(Throwable cause)

The most important methods:

String getMessage()

Throwable getCause()

Throwable initCause(Throwable cause)

String toString()

void printStackTrace()

Note: Every exception contains information about the call stack at the
moment when the exception was created.

Class Error

An Error is a subclass of Throwable that indicates serious problems
that a reasonable application should not try to catch. Most such errors
are abnormal conditions.

The most important subclasses (in the package java.lang):

VirtualMachineError
OutOfMemoryError
StackOverflowError
InternalError
UnknownError

LinkageError

ThreadDeath

AssertionError

Class RuntimeException

The most important subclasses of java.lang.RuntimeException:

ArithmeticException

IndexOutOfBoundsException
ArrayIndexOutOfBoundsException
StringIndexOutOfBoundsException

IllegalArgumentException
NumberFormatException

NullPointerException

ClassCastException

NegativeArraySizeException

ArrayStoreException

IllegalStateException

UnsupportedOperationException

Exception Advantages

The use of exceptions has the following advantages over traditional
error management techniques:

Separating error handling code from “regular” code
A problem which can raise at many places in program can be
handled in only one place.

Propagating errors up the call stack
Mechanism enabling propagation of exceptions over the call
stack enables transparent handling of errors raised in libraries.

Grouping error types and error differentiation
Multiple types of errors can be handled similarly at one place.

Streams

Often a program needs to:

bring in information from an external source, or

send out information to an external destination.

The information can be:

in a file on a disk

somewhere on the network

in memory

in another program

Streams present an abstraction that allows to access (read or write)
such information sequentially.

Using the streams we can access sources and destinations of
information in a unified way no matter where they actually are.

Streams

We distinguish two types of streams:

input streams - programs read from them

output streams - programs write to them

The algorithms for sequentially reading and writing data are basically
the same:

Reading
open a stream
while more information

read information
close the stream

Writing
open a stream
while more information

write information
close the stream

Streams

The package java.io contains a collection of stream classes.

The stream classes are divided into two class hierarchies:

Byte Streams - they work on streams of 8-bit bytes (binary
data). They are subclasses of (abstract) classes:

InputStream - input streams

OutputStream - output streams

Character Streams - they work on streams of 16-bit characters
(text files). They are subclasses of (abstract) classes:

Reader - input streams

Writer - output streams

Streams
InputStream:

int read()
int read(byte[] b)
int read(byte[] b, int off, int len)

OutputStream:
void write(int b)
void write(byte[] b)
void write(byte[] b, int off, int len)

Reader:
int read()
int read(char[] cbuf)
int read(char[] cbuf, int off, int len)

Writer:
void write(int c)
void write(char[] cbuf)
void write(char[] cbuf, int off, int len)

Streams

There are also other methods. All these classes contain method

void close()
Note: The method close() can be called either explicitly, or implicitly by
the garbage collector.

The classes InputStream and Reader contain methods

long skip(long n)

boolean markSupported()

void mark(int readAheadLimit)

void reset()

The classes OutputStream and Writer contain method

void flush()

Most of the methods that work with streams can throw
java.io.IOException (or some of its subclasses).

File Streams

The file streams read or write a file on the file system:

FileInputStream

FileOutputStream

FileReader

FileWriter

An example of use of FileReader and FileWriter:

Reader in = new FileReader("input.txt");
Writer out = new FileWriter("output.txt");
int c;
while ((c = in.read()) >= 0) {

out.write(c);
}
in.close();
out.close();

File Streams

It is better to read and write bigger chunks of data:

InputStream in = new FileInputStream("input.txt");
OutputStream out = new FileOutputStream("output.txt");
final int BUF_LEN = 8192;
byte[] buf = new byte[BUF_LEN];
int l;
while ((l = in.read(buf, 0, BUF_LEN)) >= 0) {

out.write(buf, 0, l);
}
in.close();
out.close();

File Streams

File streams can be created using:

a file name (class String)

a file object (class File)

a file descriptor (class FileDescriptor)

For example, the class FileReader contains the following constructors:

FileReader(String fileName)

FileReader(File file)

FileReader(FileDescriptor fd)

Classes FileOutputStream and FileWriter contain also constructors
that allow to specify if an existing file should be overwritten or data
should be appended to it:

FileOutputStream(String name, boolean append)

FileOutputStream(File file, boolean append)

Class File

The instances of the class java.io.File represent files on the file
system.

It presents an abstract, system-independent view of hierarchical
pathnames.

We can create a File object for a file on the file system and query the
object for information about the file, such as:

the full path name

the name of its parent directory

if it is directory or a regular file

if it is an absolute or relative pathname

if the file exists

the length of the file

the access rights (if it can be read and/or written)

other attributes (time of modification, if it is hidden, ...)

Class File (cont.)

We can use an object of class File also for manipulation with the
given file. We can for example:

create the file

delete the file

rename the file

obtain a list of files in the directory

create a subdirectory

set time of modification

create temporary files

Example of a deletion of a file:

String filename = "test.txt";
File f = new File(filename);
boolean ok = f.delete();
System.out.println(ok ? "O.K." : "Not deleted");

Class File (cont.)

Example of use of the class File:

File input = new File("input.txt");
if (!input.exists()) {

System.err.println("Error: file \"" + input.getName() +
"\" doesn't exist");

return;
}

FileReader reader = new FileReader(input);
...

Filter Streams

The java.io package provides a set of abstract classes that define and
partially implement filter streams:

FilterInputStream

FilterOutputStream

FilterReader

FilterWriter

Filter streams allow to combine features of streams and achieve
desired functionality.

A filter stream is constructed on another stream (the underlying
stream):

The read method reads input from the underlying stream, filters
it and passes to the caller.

The write method filters output and writes the resulting data to
the underlying stream.

Buffered Streams

An example of filter streams are buffered streams:

BufferedInputStream

BufferedOutputStream

BufferedReader
LineNumberReader

BufferedWriter

An example of use of BufferedReader:

BufferedReader reader =
new BufferedReader(new FileReader("input.txt"));

String s;
while((s = reader.readLine()) != null) {

System.out.println(s);
}

Other Types of Streams

Another type of filter streams are pushback streams:

PushbackInputStream

PushbackReader

They add to streams the ability to “push back” or “unread” bytes or
characters.

The are streams for conversion between byte streams and character
streams:

InputStreamReader

OutputStreamWriter
Note: The character encoding used by these streams can be specified in
their constructors.

Reader r = new InputStreamReader(
new FileInputStream("input.txt"));

Writer w = new OutputStreamWriter(
new FileOutputStream("output.txt"), "iso-8859-2");

Print Streams

Print streams allow to print values of different data types in a human
readable form:

PrintStream

PrintWriter

Unlike other streams the print streams never throw an IOException;
instead, exceptional situations merely set an internal flag that can be
tested via the checkError() method.
Optionally, they can be created so as to flush automatically after every
end of line.
The overloaded methods print() and println() are used to print
values of various data types:

void print(boolean b)

void print(char c)

void print(int i)

. . .

Print Streams (cont.)

The methods println() should be used to print line separators
instead of using '\n' in printed strings.

In the following example

PrintWriter w = new PrintWriter(
new FileOutputStream("output.txt"));

w.print("Hello\n");

it is better to use

w.println("Hello");

Different platforms use different line separators:

Platform Decimal Chars
MS Windows 13 10 "\r\n"
Unix 10 "\n"
MacOS 13 "\r"

Standard Input and Output

Three standard streams are streams are defined in the class
java.lang.System as static final variables:

in - standard input (InputStream)

out - standard output (PrintStream)

err - standard error output (PrintStream)

All these streams are implicitly opened.

These streams should not be closed.

Standard input stream typically corresponds to keyboard input.

Standard output and error streams typically correspond to display
output.

All these streams can be redirected by a user to a file or another
program:

$ java MyClass < input.txt > output.txt
$ java MyClass < input.txt | less

Stream Tokenizer
The StreamTokenizer class takes an input stream and parses it into
“tokens”, allowing the tokens to be read one at a time. The stream
tokenizer can recognize identifiers, numbers, quoted strings, and
various comment styles.

StreamTokenizer s = new StreamTokenizer(
new InputStreamReader(System.in));

s.eolIsSignificant(true);
loop: while (true) {

switch (s.nextToken()) {
case StreamTokenizer.TT_EOF: break loop;
case StreamTokenizer.TT_WORD:

System.out.println("a word: " + s.sval); break;
case StreamTokenizer.TT_NUMBER:

System.out.println("a number: " + s.nval); break;
case StreamTokenizer.TT_EOL:

System.out.println("EOL"); break;
default:

System.out.println("other: " + (char)s.ttype);
}

}

Reading from URL

The streams are also used to represent network connections:

URL url = new URL("http://java.sun.com/docs");
InputStream in = url.openStream();
OutputStream out = new FileOutputStream("output.txt");
int c;
while ((c = in.read()) >= 0) {

out.write(c);
}
in.close();
out.close();

Note: The class URL is from the java.net package.

Data Streams
There are input and output streams for reading and writing primitive
data types in a binary (but portable) format:

DataInputStream
DataOutputStream

The class DataInputStream contains methods such as:
void readFully(byte[] b)
void readFully(byte[] b, int off, int len)
boolean readBoolean()
byte readByte()
int readUnsignedByte()
short readShort()
int readUnsignedShort()
int readInt()
String readUTF()
. . .

Data Streams (cont.)

The class DataOutputStream contains methods such as:
void writeBoolean(boolean v)
void writeByte(int v)
void writeChar(int v)
void writeInt(int v)
void writeLong(long v)
void writeFloat(float v)
void writeDouble(double v)
void writeBytes(String s)
void writeChars(String s)
void writeUTF(String str)

All these methods for reading and writing binary data are declared in
interfaces:

DataInput
DataOutput

Serialization

Java's object serialization allows to take any object that implements
the java.io.Serializable interface and turn it into a sequence of bytes
that can later be fully restored to regenerate the original object.

The following classes are used to read and write objects:

ObjectInputStream

ObjectOutputStream

It is possible to use these classes to read and write primitive data
types since they implement interfaces DataInput and DataOutput.

Note: Instance variables defined as transient and static variables are
prevented from serialization.

The interface java.io.Serializable does not declare any methods.

Serialization (cont.)

Writing into an object stream:

FileOutputStream fos = new FileOutputStream("t.tmp");
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeInt(12345);
oos.writeObject("Today");
oos.writeObject(new Date());
oos.close();

Reading from an object stream:

FileInputStream fis = new FileInputStream("t.tmp");
ObjectInputStream ois = new ObjectInputStream(fis);
int i = ois.readInt();
String today = (String) ois.readObject();
Date date = (Date) ois.readObject();
ois.close();

Serialization (cont.)

Classes that require special handling during the serialization and
deserialization process must implement two special methods with the
given signatures:

private void writeObject(ObjectOutputStream s)
throws IOException {

s.defaultWriteObject();
// customized serialization code

}

private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException {

s.defaultReadObject();
// customized deserialization code
// . . .
// followed by code to update the object, if necessary

}

Serialization (cont.)

For complete, explicit control of the serialization process, a class
must implement the java.io.Externalizable interface.

For Externalizable objects, only the identity of the object's class is
automatically saved by the stream. The class is responsible for writing
and reading its contents.

package java.io;

public interface Externalizable extends Serializable {
public void writeExternal(ObjectOutput out)

throws IOException;

public void readExternal(ObjectInput in)
throws IOException, java.lang.ClassNotFoundException;

}

Note: Default constructor of a deserialized object implementing
Externalizable is always invoked. Thus the constructor must be
public.

Random Access Files

The input and output streams are sequential access streams.
Random access files permit nonsequential, or random, access to a
file's contents.
The RandomAccessFile class in the java.io package implements a
random access file.

Note: The RandomAccessFile class is not part of class hierarchy of
streams, but it implements DataInput and DataOutput interfaces.

It is possible to open a random access file only for reading:

new RandomAccessFile("file.txt", "r");

And also for reading and writing:

new RandomAccessFile("file.txt", "rw");

After the file has been opened, the common methods read() and
write() can be used for reading and writing.

Random Access Files (cont.)

The class RandomAccessFile supports the notion of a file pointer
that indicates the current location in the file.

When the file is opened, the file pointer is set to 0 (to the
beginning of the file).

Calls to the read() and write() methods adjust the file pointer
by the number of bytes read or written.

The RandomAccessFile class contains three methods for explicitly
manipulating the file pointer:

int skipBytes(int n) - moves the file pointer forward the specified
number of bytes

void seek(long pos) - positions the file pointer just before the
specified byte

long getFilePointer() - returns the current byte location of the file
pointer

Random Access Files (cont.)

The RandomAccessFile class contains also methods for manipulation
with the length of the file:

long length() - returns the length of the file

void setLength(long newLength) - sets the length of the file

Data Structures

The basic data structures are:

array

list

hashtable

tree

Array: indexed access, can be resizable

0 1 2 3 4 5 6 7 8 9 10 11 12 13

List: singly or doubly linked, can be circular

Data Structures (cont.)

Hashtable: Tree:

Abstract Data Types

Data structures support different operations:

insert an element

remove an element

search an element

. . .

Abstract data types are interfaces specifying what operations are
provided. Examples of ADTs:

Set

Dictionary - also called Map

Vector - resizable array

Stack - also called LIFO

Queue - also called FIFO

Priority Queue

Collections in Java

A collection (sometimes called container) is an objects that groups
multiple elements into single unit.

Earlier versions of Java included the following collections:

java.util.Vector

java.util.Hashtable

array

Current versions of Java contain collection framework - a unified
architecture for representing and manipulating collections. It consists
of:

Interfaces - abstract data types representing collections

Implementations - concrete implementations of the interfaces

Algorithms - methods that perform useful computations
(searching and sorting)

Interfaces

The collection interfaces in the package java.util form a hierarchy:

Collection

Set

SortedSet

List

Map

SortedMap

Implementations

The classes implementing collections in the package java.util:

AbstractSet

LikedHashSet LinkedList

AbstractSequentialListTreeSetHashSet ArrayList

AbstractList

AbstractCollection

Stack

Vector

Implementations (cont.)

The classes implementing maps:

HashMap WeakHashMap

LinkedHashMap

IdentityHashMap

AbstractMap

TreeMap

Dictionary

Hashtable

obsolete

The Collection Interface

The Collection is the root of the collection hierarchy.

A Collection represents a group of objects - its elements. (Some
implementations allow duplicate elements and others do not.)

The primary use of the Collection interface is pass around collections
of objects where maximum generality is desired.

The Collection interface declares the following basic operations:

int size()

boolean isEmpty()

boolean contains(Object o)

boolean add(Object o) - optional

boolean remove(Object o) - optional

Iterator iterator()

Note: Some operation are designated as optional. Implementations that
do not implement them throw an UnsupportedOperationException.

Iterators

An iterator provides a way to access the elements of an aggregate
object sequentially without exposing its underlying representation.

The java.util.Iterator provides uniform interface for traversing
different aggregate structures.

public interface Iterator {
boolean hasNext();
Object next();
void remove(); // optional

}

Example of use:

Collection c = new ArrayList();
. . . // fill the collection

for (Iterator i = c.iterator(); i.hasNext();) {
Object o = i.next();

. . . // process the element
}

Enumerations

Earlier implementations of Java used the java.util.Enumeration
interface instead of iterator:

public interface Enumeration {
boolean hasMoreElements();
Object nextElement();

}

The differences between them are:

Iterator allows the caller to remove elements from the
underlying collection.

Method names have been improved in Iterator.

New implementations should use Iterator in preference to
Enumeration.

Iterators (cont.)

The Iterator interface contains the optional method remove() that
removes from the underlying collection the last element that was
returned by next():

The remove() method may be called only once per call to
next() - an exception is thrown if this condition is violated.

The remove() method is the only safe way to modify a
collection during iteration.

The behavior is unspecified if the underlying collection is
modified in any other way while iteration is in progress.

Bulk Operations

The bulk operations perform some operation on an entire Collection
in a single shot:

boolean containsAll(Collection c)

boolean addAll(Collection c) - optional

boolean removeAll(Collection c) - optional

boolean retainAll(Collection c) - optional

void clear() - optional

For example. to remove all instances of a specified element e from a
collection c we can use:

c.removeAll(Collections.singleton(e));

Note: The class Collections contains many useful static methods that
operate on collections. The singleton() method returns an immutable
collection (set) containing only the specified object.

Array Operations

The toArray() allow the contents of a Collection to be translated
into an array:

Object[] toArray()

Object[] toArray(Object[] a)

The following code dumps the contents of c into a newly allocated
array:

Object[] a = c.toArray();

Suppose c is a collection known to contain only strings. The following
code can be used to dump the contents of c into a newly allocated
array of String:

String[] a = (String[])c.toArray(new String[0]);

Note: If the collection fits in the specified array, this array is used,
otherwise a new array is allocated.

The Set Interface

A Set is a Collection that cannot contain duplicate elements. It
models a mathematical set abstraction.
The Set interface contains no methods than those inherited from
Collection.

There are two general-purpose Set implementations:

HashSet - stores its elements in a hashtable, it is the
best-performing implementation.

TreeSet - stores its elements in a red-black tree, guarantees the
order of iteration (the elements will be sorted).

The following code creates a new collection containing the same
elements as the collection c, but with all duplicates eliminated:

Collection d = new HashSet(c);

The Set Interface (cont.)

Example of use of a Set that prints out any duplicate words, the
number of distinct words, and a list of the words with duplicates
eliminated:

import java.util.*;

public class FindDuplicates {
public static void main(String[] args) {

Set s = new HashSet();
for (int i = 0; i < args.length; i++) {

if (!s.add(args[i])) {
System.out.println("Duplicate detected: "

+ args[i]);
}

}
System.out.println(s.size() +

" distinct words detected: " + s);
}

}

The Set Interface (cont.)

The bulk operations on sets correspond to standard set-algebraic
operations:

s1.containsAll(s2) - returns true if s2 is a subset of s1

�� � ��

s1.addAll(s2) - transforms s1 into the union of s1 and s2

� � � � �

s1.retainAll(s2) - transforms s1 into the intersection of s1
and s2

� � � � �

s1.removeAll(s2) - transforms s1 into the set difference of
s1 and s2

� � � � �

The List Interface

A List is an ordered Collection (sometimes called a sequence). Lists
may contain duplicate elements.

There are two general-purpose List implementations:

ArrayList - generally the best-performing implementation

LinkedList - offers better performance under certain
circumstances

The List contains methods for positional access that manipulate
elements based on their numerical position in the list:

Object get(int index)

Object set(int index, Object element) - optional

void add(int index, Object element) - optional

Object remove(int index) - optional

boolean addAll(int index, Collection c) - optional

The List Interface (cont.)

For example, the following method swaps two elements of a list:

private static void swap(List a, int i, int j) {
Object tmp = a.get(i);
a.set(i, a.get(j));
a.set(j, tmp);

}

The following method randomly permutes the specified List using the
specified source of randomness:

public static void shuffle(List a, Random rnd) {
for (int i = a.size(); i > 1; i--) {

swap(a, i-1, rnd.nextInt(i));
}

}

Note: The class Collections contains such method shuffle().

The List Interface (cont.)

The remove() operation always removes the first occurrence of
the specified element.

The add() and addAll() operations always append the new
element(s) to the end of the list.

To concatenate one list to another we can use:

list1.addAll(list2);

The non-destructive version of concatenation:

List list3 = new ArrayList(list1);
list3.addAll(list2);

The List interface contains two methods for searching:

int indexOf(Object o)
int lastIndexOf(Object o)

The ListIterator Interface

The List interface supports its own extended version of iterator:

public interface ListIterator extends Iterator {
boolean hasNext();
Object next();

boolean hasPrevious();
Object previous();

int nextIndex();
int previousIndex();

void remove(); // optional
void set(Object o); // optional
void add(Object o); // optional

}

The ListIterator Interface (cont.)

To obtain ListIterator we can use List methods:

ListIterator listIterator()

ListIterator listIterator(int index)

A list iterators has a cursor pointing between elements:

0 1 2 3 4 1098765

0 1 2 3 4 5 6 7 8 9 10 11Index of cursor:

The ListIterator Interface (cont.)

Iterating backwards in a list:

for (ListIterator i = list.listIterator(list.size());
i.hasPrevious();) {

Object o = i.previous();
. . .

}

A method that replaces all occurrences of one specified value with
another:

public static void replace(List l, Object x, Object y) {
for (ListIterator i = l.listIterator(); i.hasNext();) {

if (x == null ? i.next() == null
: x.equals(i.next())) {

i.set(y);
}

}
}

The List Interface (cont.)

The List interface contains a method returning a range-view:

List subList(int fromIndex, int toIndex)

The returned List contains the portion of the original list whose
indexes range from fromIndex, inclusive, to toIndex, exclusive.

Changes in the former List are reflected in the latter.

For example, to remove a range of elements from a list we can use:

list.subList(fromIndex, toIndex).clear();

Searching for an element in a range:

int i = list.subList(fromIndex, toIndex).indexOf(o);
int j = list.subList(fromIndex, toIndex).lastIndexOf(o);

The Collections Class
The Collections class contains static methods implementing different
algorithms working on collections. Most of them apply specifically to
List:

void sort(List list)
int binarySearch(List list, Object key)
void reverse(List list)
void shuffle(List list)
void fill(List list, Object obj)
void copy(List dest, List src)

There is a similar class called Arrays containing as static methods
algorithms working on arrays.

The Map Interface

A Map is an object that maps keys to values.

A map cannot contain duplicate keys: Each key can map to at most
one value.

The most important methods:

Object put(Object key, Object value) - optional

Object get(Object key)

Object remove(Object key) - optional

boolean containsKey(Object key)

boolean containsValue(Object value)

int size()

boolean isEmpty()

The Map Interface (cont.)

Other methods:

void putAll(Map t) - optional

void clear() - optional

Set keySet()

Collection values()

Set entrySet()

The Collection-view methods provide the only means to iterate over
a Map:

for (Iterator i = m.keySet().iterator(); i.hasNext();) {
System.out.println(i.next());

}

The Map Interface (cont.)

There are two general-purpose Map implementations:

HashMap - stores its entries in a hash table, it is the
best-performing implementation

TreeMap - stores its entries in a red-black tree, guarantees the
order of iteration

There is also an older class Hashtable.
Hashtable has been retrofitted to implement Map.

Object Ordering

Objects that implement the java.lang.Comparable interface can be
ordered automatically. The Comparable interface provides natural
ordering for a class:

public interface Comparable {
public int compareTo(Object o);

}

The method o1.compareTo(o2) returns:

a negative integer - if o1 is less than o2

zero - if o1 is equal to o2

a positive integer - if o1 is greater than o2

Many standard classes such as String and Date implement the
Comparable interface.

Object Ordering (cont.)

import java.util.*;

public class Name implements Comparable {
private String firstName, lastName;

. . .

public boolean equals(Object o) {
if (!(o instanceof Name)) return false;
Name n = (Name)o;
return firstName.equals(n.firstName) &&

lastName.equals(n.lastName);
}

public int hashCode() {
return 31 * firstName.hashCode() +

lastName.hashCode();
}

. . .

Object Ordering (cont.)

. . .

public int compareTo(Object o) {
Name n = (Name)o;
int cmp = lastName.compareTo(n.lastName);
if (cmp != 0) return cmp;
return firstName.compareTo(n.firstName);

}
}

Note how methods equals() and hashCode() are redefined to be
consistent with compareTo().

Comparators

If we want to sort objects in some other order than natural ordering,
we can use the Comparator interface:

public interface Comparator {
int compare(Object o1, Object o2);

}

A Comparator is an object that encapsulates ordering.

The compare() method compares two its arguments, returning a
negative integer, zero, or a positive integer as the first argument is
less than, equal to, or greater than the second.

Methods implementing different algorithms in classes Collections
and Arrays allow to specify the comparator that should be used in
these algorithms.

The SortedSet Interface

A SortedSet is a Set that maintains its elements in ascending order,
sorted according to the elements' natural order, or according to a
Comparator provided at SortedSet creation time.

The SortedSet adds the following methods to the methods declared in
the Set interface:

SortedSet subSet(Object fromElement, Object toElement)

SortedSet headSet(Object toElement)

SortedSet tailSet(Object fromElement)

Object first()

Object last()

Comparator comparator()

The SortedSet Interface (cont.)

There are some differences on behavior of methods inherited from the
Set interface:

The iterator returned by the iterator() traverses the sorted set
in order.

The array returned by toArray() contains the sorted set's
elements in order.

The SortedSet interface is implemented by the class:

TreeSet

The SortedMap Interface

A SortedMap is a Map that maintains its entries in ascending order,
sorted according to the keys' natural order, or according to a
Comparator provided at SortedMap creation time.

The SortedMap adds the following methods to the methods declared
in the Map interface:

Comparator comparator()

SortedMap subMap(Object fromKey, Object toKey)

SortedMap headMap(Object toKey)

SortedMap tailMap(Object fromKey)

Object firstKey()

Object lastKey()

There is one class implementing the SortedMap interface:

ListMap

Implementations

The general-purpose implementations are summarized in the table
below:

Implementations
Hash Table Resizable Array Balanced Tree Linked List

Set HashSet TreeSet
List ArrayList LinkedList
Map HashMap TreeMap

The SortedSet and SortedMap interfaces are implemented by TreeSet
and TreeMap classes.

The BitSet Class

The java.util.BitSet class implements a vector of bits that grows as
needed.
Each component of the bit set has a boolean value. The bits of a BitSet
are indexed by nonnegative integers. Individual indexed bits can be
examined, set, or cleared.
One BitSet may be used to modify the contents of another BitSet
through logical AND, logical inclusive OR, and logical exclusive OR
operations.

The BitSet class can used as an efficient implementation of a set if the
corresponding universe of possible values is finite and small.

The logical operations then correspond to the set operations.

Note: The BitSet class is not part of the collection framework.

Nested Classes

It is possible to define a class as a member of another class. Such a
class is called nested class:

class EnclosingClass {
. . .

class NestedClass {
. . .

}
}

A nested class has special privilege: It has unlimited access to its
enclosing class's members, even if they are declared private.

A class should be defined within another class when the nested class
makes sense only in the context of its enclosing class or when it relies
on the enclosing class for its function.

Nested Classes (cont.)

Like other members, a nested class can be declared static.
A static nested class is called just static nested class.

A non-static nested class is called an inner class.

class EnclosingClass {
. . .

static class StaticNestedClass {
. . .

}

class InnerClass {
. . .

}
}

Nested Classes (cont.)

A static nested class cannot refer directly to instance variables or
methods defined in its enclosing class.

An inner class is associated with an instance of its enclosing class
and has direct access to that object's instance variables and methods.
It cannot define any (non-final) static members itself.

Like other classes, nested classes can be declared abstract or final.

Also, the access specifiers - private, protected and public - may be
used to restrict access to nested classes.

A nested class can be also declared in any block of code.

A nested class declared within a method or other smaller block of
code has access to any final local variables in scope.

Inner Classes - Example

public class Container1 {
private Object[] items;

. . .
public Iterator iterator() {

return new ContainerIterator();
}

class ContainerIterator implements Iterator {
int index = 0;
public boolean hasNext() {

return index < items.length;
}
public Object next() {

if (!hasNext())
throw new NoSuchElementException();

return items[index++];
}

. . .
}

}

Anonymous Inner Classes

An inner class can be declared without naming it. However,
anonymous classes can make code difficult to read.

public class Container2 {
private Object[] items;

. . .
public Iterator iterator() {

return new Iterator() {
int index = 0;
public boolean hasNext() {

return index < items.length;
}
public Object next() {

if (!hasNext())
throw new NoSuchElementException();

return items[index++];
}

. . .
};

}
}

Anonymous Inner Classes (cont.)

An anonymous class is never abstract.

An anonymous class is always an inner class, it is never static.

An anonymous class is always implicitly final.

An anonymous class cannot have an explicitly declared constructor.
Instead, the compiler provides an anonymous constructor.

Locales

A java.util.Locale object represents a specific geographical, political,
or cultural region.

An operation that requires a Locale to perform its task is called
locale-sensitive and uses to Locale to tailor information for the user.

For example, displaying a number is a locale-sensitive operation - the
number should be formatted according to the customs/conventions
of the user's native country, region, or culture.

Constructors:

Locale(String language)

Locale(String language, String country)

Locale(String language, String country, String variant)

Some methods:

static Locale getDefault()

static Locale[] getAvailableLocales()

Locales (cont.)

Examples:

new Locale("cs", "CZ") - Czech, Czech Republic

new Locale("en", "US") - English, United States

new Locale("en", "GB") - English, United Kingdom

new Locale("fr", "FR") - French, France

new Locale("de", "DE") - German, Germany

Remark: Locales are often written as "cs_CZ", "en_US", "en_GB", ...

Formatting Numbers

By invoking the methods provided by the java.text.NumberFormat we
can format numbers, currencies, and percentages according to Locale.

Example:

NumberFormat f = NumberFormat.getNumberInstance(locale);
String s = f.format(345678.234);
System.out.println(s + " " + locale.toString());

We obtain:

345 678,234 cs_CZ
345,678.234 en_US
345.678,234 de_DE

Similarly we can use methods getCurrencyInstance() and
getPercentInstance() to format currencies and percentages.

Formatting Numbers (cont.)

We can use the java.util.DecimalFormat class (it is a subclass of
NumberFormat) to format decimal numbers.
The class allows to control display of leading and trailing zeros,
prefixes and suffixes, grouping (thousands) separators, and the
decimal separator. The format specified using pattern:

String pattern = ...
DecimalFormat f = new DecimalFormat(pattern);
String s = f.format(12345.6789);
System.out.println(pattern + " " + s);

We obtain (using "cs_CZ" locale):

###,###.### 12 345,679
###.## 12345,68
000000.000 012345,679

It is possible to use the DecimalFormatSymbols class to change the
symbols that appear in the formatted numbers produced by the
format() method.

	Source code creation
	Compilation
	Running
	
	Info for Students
	References
	Java - Overview
	Creating Java Program (Step 1)
	Creating Java Program (Step 2)
	Creating Java Program (Step 3)
	Java Environment
	Bytecode
	The Java Platform
	Java Virtual Machine
	Syntax and Semantics
	Overview of the Syntax of Java
	Lexical Elements
	Literals
	Keywords
	Comments
	Types, Values and Variables
	Integral Types and Values
	Floating-Point Types and Values
	The Boolean Type and Values
	The Arithmetic Operators
	Unary Operators
	Examples of use of 	exttt {++} and 	exttt {--}
	Relational Operators
	Conditional Operators
	Bitwise Operators
	Shift Operators
	Ternary Operator (?:)
	Assignment Operators
	Assignment Operators (cont.)
	Compound Assignment Operators
	Cast Expression
	Priority of Operators
	Associativity of Operators
	Statements
	Blocks
	Branching Statement
	Iteration Statements
	Driving Iteration Statements
	Driving Iteration Statements
	The lstinline {switch} Statement
	Array
	Array (cont.)
	Array (cont.)
	Multidimentional Array
	Manipulating Arrays
	Method Definition
	Method Definition (cont.)
	Method Invocation
	Object-Oriented Modeling
	Messages
	Examples of Objects
	Class
	Instances
	Java Class
	Java Objects
	References
	How To Destroy Objects?
	The lstinline {this} Keyword
	Overloading of Methods
	Encapsulation
	Encapsulation (cont.)
	Initialization of an Object
	Constructors
	Constructors (cont.)
	Constructors (cont.)
	Static Members
	Static Members (cont.)
	Static Members (cont.)
	Static Members (cont.)
	Static Initializers
	Static Initializers (cont.)
	Inheritance
	Inheritance (cont.)
	Inheritance (cont.)
	Hierarchy of Classes
	Use of Subclasses
	Use of Subclasses (cont.)
	Cast Operator
	The lstinline {instanceof} Operator
	The lstinline {final} Classes
	Polymorphism
	Polymorphism (cont.)
	The lstinline {super} Keyword
	The lstinline {final} Methods
	Inheritance and Constructors
	Inheritance and Constructors (cont.)
	Abstract Classes
	Abstract Classes (cont.)
	Abstract Methods
	Abstract Methods (cont.)
	Interfaces
	Interfaces (cont.)
	Interfaces (cont.)
	Interfaces (cont.)
	Interfaces (cont.)
	Interfaces (cont.)
	The lstinline {final} Attributes
	The lstinline {final} Attributes (cont.)
	Packages
	Packages (cont.)
	Canonical Names
	Canonical Names (cont.)
	Public Classes and Interfaces
	Hierarchy of Packages
	Import Declarations
	Import Declarations (cont.)
	Import Declarations (cont.)
	Import Declarations (cont.)
	Import Declarations (cont.)
	Import Declarations (cont.)
	Source Files
	Source Files (cont.)
	Ant
	Package Names
	Package Names (cont.)
	Package Names (cont.)
	Access Control
	Classes Without Instances
	Modifiers
	Modifiers (cont.)
	Class lstinline {java.lang.Object}
	References
	References (cont.)
	Method lstinline {equals()}
	Method lstinline {equals()}
(cont.)
	Copying Objects
	Copying Objects (cont.)
	Garbage Collection
	Strings
	Class lstinline {String}
	Class lstinline {String} (cont.)
	Class lstinline {String} (cont.)
	Class lstinline {String} (cont.)
	Class lstinline {String} (cont.)
	Class lstinline {String} (cont.)
	Strings - Example
	Strings - Example
	Class lstinline {StringBuffer}
	Class lstinline {StringBuffer} (cont.)
	Class lstinline {StringBuffer} (cont.)
	Class lstinline {StringBuffer} (cont.)
	Operator lstinline {+}
	Operator lstinline {+} (cont.)
	StringBuffer - Example
	Primitive Type Wrappers
	Primitive Type Wrappers (cont.)
	Class lstinline {Character}
	ASCII Table
	Manipulation With Characters
	Class lstinline {Character} (cont.)
	Class lstinline {Integer}
	Class lstinline {Number}
	Classes lstinline {Float} and lstinline {Double}
	Class lstinline {Math}
	Class lstinline {Math} (cont.)
	Class lstinline {Math} (cont.)
	Class lstinline {Math} (cont.)
	Method lstinline {main()}
	Program Exit
	Exceptions
	Exceptions - Example
	Exceptions - Motivation
	Exceptions - Motivation (cont.)
	Exceptions - Motivation (cont.)
	Exceptions - Motivation (cont.)
	Exception Objects
	Catching Exceptions
	The lstinline {try} Block
	The lstinline {catch} Block(s)
	The lstinline {catch} Block(s)
(cont.)
	The lstinline {catch} Block(s)
(cont.)
	The lstinline {finally} Block
	Exceptions and Methods
	Exceptions and Methods (cont.)
	Hierarchy of Exceptions
	Hierarchy of Exceptions (cont.)
	Hierarchy of Exceptions (cont.)
	Throwing an Exception
	Class lstinline {Throwable}
	Class lstinline {Error}
	Class lstinline {RuntimeException}
	Exception Advantages
	Streams
	Streams
	Streams
	Streams
	Streams
	File Streams
	File Streams
	File Streams
	Class lstinline {File}
	Class lstinline {File} (cont.)
	Class lstinline {File} (cont.)
	Filter Streams
	Buffered Streams
	Other Types of Streams
	Print Streams
	Print Streams (cont.)
	Standard Input and Output
	Stream Tokenizer
	Reading from URL
	Data Streams
	Data Streams (cont.)
	Serialization
	Serialization (cont.)
	Serialization (cont.)
	Serialization (cont.)
	Random Access Files
	Random Access Files (cont.)
	Random Access Files (cont.)
	Data Structures
	Data Structures (cont.)
	Abstract Data Types
	Collections in Java
	Interfaces
	Implementations
	Implementations (cont.)
	The lstinline {Collection} Interface
	Iterators
	Enumerations
	Iterators (cont.)
	Bulk Operations
	Array Operations
	The lstinline {Set} Interface
	The lstinline {Set} Interface (cont.)
	The lstinline {Set} Interface (cont.)
	The lstinline {List} Interface
	The lstinline {List} Interface (cont.)
	The lstinline {List} Interface (cont.)
	The lstinline {ListIterator} Interface
	The lstinline {ListIterator} Interface (cont.)
	The lstinline {ListIterator} Interface (cont.)
	The lstinline {List} Interface (cont.)
	The lstinline {Collections} Class
	The lstinline {Map} Interface
	The lstinline {Map} Interface (cont.)
	The lstinline {Map} Interface (cont.)
	Object Ordering
	Object Ordering (cont.)
	Object Ordering (cont.)
	Comparators
	The lstinline {SortedSet} Interface
	The lstinline {SortedSet} Interface (cont.)
	The lstinline {SortedMap} Interface
	Implementations
	The lstinline {BitSet} Class
	Nested Classes
	Nested Classes (cont.)
	Nested Classes (cont.)
	Inner Classes - Example
	Anonymous Inner Classes
	Anonymous Inner Classes (cont.)
	Locales
	Locales (cont.)
	Formatting Numbers
	Formatting Numbers (cont.)

