Info for Students

Introduction to Programming
(Java)

Roman Szturc (roman.szturc@vsb.cz)
Zdenek Sawa (zdenek.sawa@vsb.cz)

Department of Computer Science
VSB - Technical University of Ostrava

References

Lectures: Zdenek Sawa (e-mail: zdenek.sawa@vsb.cz, room: A1006
Consultations: Wednesday 9:00 - 10:30

Exercises: 40 points

Num. Date Points

08.-12.03.
22.-26.03.
05.-09.04.
19.-23.04.
03.-07.05.
17.-21.05.

OV WN R~ C
0 Oo00ONO OYW

Exam: 60 points

WWW: http://www.cs.vsb.cz/java/

See also: http://www.cs.vsb.cz/benes/vyuka/upr/index.html

Java - Overview

= Sun Microsystem, Inc., The Source for Java Technology,
http://java.sun.com

= J. Gosling, B. Joy, G. Steele, G. Bracha: The Java Language
Specification
http://java.sun.com/docs/books/jls/index.html

= JavaTM 2 Platform, Standard Edition, v 1.4.2 API Specification,
http://java.sun.com/j2se/1.4.2/docs/api/index.html

= B. Eckel, Thinking in Java,
http://www.mindview.net/Books/TI]

= JavaWorld.com, an IDG Communications company, JavaWorld,
http://www.javaworld.com

Java is a general-purpose language with the following features:
= is object-oriented (class-based)
= is cross-platform
= is strongly typed
= has garbage collection
= supports concurrecy
= supports exceptions
= security is considered

It was created by James Gosling from Sun Microsystems in 1990.
Original name was Oak and it was intended for use in embedded
consumer-electronic applications.

Later in 1993 it was renamed to Java and retargeted to Internet
applications.

First official implementation (JDK 1.0) was released in 1996.



Creating Java Program (Step 1)

Creating Java Program (Step 2)

Source code creation

In the Java, each method (function) and variable exists within a class
or an object. The Java does not support global functions or variables.
Thus, the skeleton of any Java program is a class definition.

Every Java application must contain a main() method. The method is
invoked when the application is executed by a Java interpreter.

public class HelloWorld {
public static void main(String[] arguments) {
System.out.println("Hello, world...");

Compilation

Compilation transfers Java source code into Java bytecode. There is

a lot of compilers available. The most often used ones are javac and
jikes.

File name containing the source code is passed to the compiler.
Result bytecode is stored into file whose name is the class name
appended by the .class suffix.

$ javac HelloWorld.java

Note: Each compiler provides its specific options. The most important are
-classpath <path> and -g.

Java Environment

}
}
Note: A Java class source code must be stored in file which name starts
with the class name appended with the .java, so the previous example
must be stored in a file called HelloWor1d. java.
Creating Java Program (Step 3)
Running

Java bytecode can be executed using a Java interpreter. The class
name is passed as an argument to the interpreter.

Environment variable CLASSPATH plays important role while executing
the Java bytecode. It holds list of directories and libraries containg
bytecodes being executed.

$ java HellowWorld
Hello, world...
Note: It is convenient to include the “.” (dot) in the CLASSPATH. The “.”

ensures that bytecodes in the current working directory are successfully
found by interpreter.

Java combines compilation and interpretation techniques. Java source
code is first compiled into an intermediate language called bytecode.
The bytecode helps make “write once, run anywhere” possible.

Compilation Interpretation
""""""""""""""""" jrejar

. N\ N\
X.java X.class 1
(source code) (bytecode)
Compiler Interpret J

. .

X.class o
(bytecode) oS

Object.class

[ {1

String.class

Note: Compilation happens just once; interpretation occurs each time
the program is executed.



Bytecode

An example of bytecode produced by javap utility.
$ javap -c HelloWorld

Compiled from HelloWorld.java

public class HelloWorld extends java.lang.Object {
public HelloWorld();
public static void main(java.lang.String[]);

}

Method HelloWor1d()
0 aload_0
1 invokespecial #1 <Method java.lang.Object()>
4 return

Method void main(java.lang.String[])
0 getstatic #2 <Field java.io.PrintStream out>
3 1dc #3 <String "Hello, world...">
5 invokevirtual #4 <Method void printin(java.lang.String)>
8 return

Java Virtual Machine

The Java Platform

Java bytecode is machine code for the Java Virtual Machine (JVM).
Every Java interpreter is an implementation of a JVM.

Java bytecode

Class loader

Bytecode verifier

JVM
Interpreter JIT

Runtime system

Operating system

Hardware

Note: A Java program can be compiled into bytecodes on any platform
that has a Java compiler. The bytecodes can then be run on any
implementation of the JVM, regardless of operating system or hardware
platform.

A platform is the hardware or software environment in which

a program runs. The Java platform differs from most other platform
in that it's a software-only platform that runs on top of other
hardware-based platforms. The Java platform has two components:

= Java virtual machine,
= Java application programming interface (API).

Java bytecode

Java API

Java
platform

Java virtual machine

Operating system

Hardware-based platform

Note: The Java APl is a large collection of ready-made software
components that provide many useful capabilities. The Java API is
grouped into libraries of related classes and interfaces; these libraries
are known as packages.

Syntax and Semantics

Syntax - describes what constructions are possible in the language,
what is a correct program and what is not

Semantics - describes what these constructions mean, e.g., what
computer does when it performs given commands

Java distinguishes between two types of errors:
Compile time errors: They are produced by compiler.
These errors are either
= syntax - for example missing ;
= semantic - for example assignment between incompatible
types
Run time errors: They are produced by Java Virtual Machine during
execution of a program. Java contains no dangerous
constructions, always an exception is generated.



Overview of the Syntax of Java

= The programs consist of classes.

= Each class consists of definitions of data and instructions for a
certain kind of objects.

= fields (attributes): data of an object

= methods: instructions that manipulate with these data (also
called functions or procedures in other languages)

= A method consists of a header that defines its name, arguments,
return type, ... and body that contains statements.

= Statements manipulate with data stored in variables - either in
fields or in local variables.

= Execution of statements includes evaluation of expressions.
The values of expressions are then assigned into variables.

= Each variable, value and expression is of some type.

= On the lowest level a program is a sequence of lexical elements
(tokens).

Literals

Lexical Elements

= integer literals:

0 237L 033 OxbadaCafe 1996 OxO0FFOOFF

floating point literals:

lel 2. .3 0.0 3.14f 1.213e-9 1E137D
= boolean literals:

true false
= character literals:

lal lool l\tl l\\l l\l! 1\1771 '\U03a9'

= string literals:
"t M\"" "This is a string." "\r\n"
the null literal:
null

Possible escape sequences in character and string literals:

=\b \t \n \f \r \" \'" \\ \177 \u2B97

White space characters and comments are ignored:

= white space characters: space (SP), horizontal tab (HT), form

feed (FF), newline (LF), carriage return (CR)

= comments:

Basic types of lexical elements (tokens) are:

/* this is a comment */

= identifiers: x distl System9 number_of_elements
= keywords: while float 1int public class
= literals: 124 true 'd' "hello"
= separators: () { } [ ; : ,
= operators: + - * / && *= < >>=
Keywords

abstract for strictfp

boolean goto super

break if switch

byte implements synchronized

case import this

catch instanceof throw

char int throws

class interface transient

const long try

continue native void

default new volatile

do package while

double private

else protected

extends public

final return

finally short

float static



Comments

Java supports three kinds of comments:

= One-line comment - the compiler ignores everything from the
“//” to the end of line.

// This is a one-Tine comment.

= Multi-line comment - the compiler ignores everything from the
“/*” to an occurrence of “*/”.
Note: “/*/” is not a valid comment.

/* This is a comment that
continues across lines. */

= Documentation comment - the compiler ignores everything
from the “/**” to an occurrence of “*/”. javadoc tool generates
documentation based on content of the comment.

/%% This is a documentation comment.
The comment may contain html tags as well as special
tags that begin with the '@' sign. */

Integral Types and Values

Type Range Size [bits] |
byte -128..127 8
short -32768..32767 16

int -2147483648..2147483647 32
Tong | -9223372036854775808..9223372036854775807 64
char 0..65535 16

Possible operations on integer values are:

= the comparison operators (<, <=, >, >=, ==, |=)

= the unary plus and minus (+, -)

= the binary arithmetic operators (+, -, *, /, %)

. 'Ehe pre)fix and postfix increment and decrement operators
++, -

= the signed and unsigned shift operators (<<, >>, >>>)
= the bitwise complement operator (~)
= the integer bitwise operators (&, |, A)

Types, Values and Variables

Variables are used by program to hold data. Each variable used in
program must be explicitly specified by its data type and name. Java
has two kinds of data types: reference and primitive.

= Primitive
A variable of primitive type contains a single value of the

appropriate size and format for its type: a number, a character
or a boolean value.

boolean b = true;
int i = 456;
float f = 2.71828;

= Reference

The value of a reference type variable, in contrast to that of
a primitive type, is a reference to (an address of) an object or a
array.

Hashtable h = new Hashtable();
int[] a = new int[20];

Floating-Point Types and Values

The floating-point values are numbers of the form sm2¢ where

Type s m e Size [bits]
float | -1,1 | 0..2°°-1 | -149..104 32
doubTe | -1,1 | 0..2%3-1 | -1075..970 64
Type Min. value Max. value
float 1.40239846e-45f 3.40282347e+38f

doubTe | 4.94065645841246544e-324 | 1.79769313486231570e+308

Possible operations on floating-point values are:

= the comparison operators (<, <=, >, >=, ==, |=)

= the unary plus and minus (+, -)

= the binary arithmetic operators (+, -, *, /, %)

- 'Ehe pre)fix and postfix increment and decrement operators
++, ——



The Boolean Type and Values

The Arithmetic Operators

The type boolean has two possible values: true and false

Possible operations on floating-point values are:
= the relational operators (==, !=)
= the logical complement operator (!)
the binary logical operators (&, |, A)
the conditional-and and conditional-or operators (&&, | |)
the ternary conditional operator (?:)

Boolean expressions determine the control flow in several kinds of
statements:

= the if statement

= the while statement
= the do statement

= the for statement

. Unary Operators

Java's unary operators can use either prefix or postfix notation.

Operator Use Description

+ +op promotes op to int if it is a byte, short or
char

- -op arithmetically negates op

++ ++op | increments op by 1; evaluates to value of op
before the incrementation

++ op++ | increments op by 1; evaluates to value of op

after the incrementation

-- --op | decrements op by 1; evaluates to value of op
before the decrementation

-- op-- | decrements op by 1; evaluates to value of op
after the decrementation

Examples:

-X +(x * y) T++ alj--1++

The arithmetic operators refer to the standard mathematical
operators: addition, subtraction, multiplication, division and modulu:

Op. Use Description

+ | X +y | addsxandy
- | x - y | subtracts y from x
* | x * y | multiplies x by y
/ | x / y | divides x by y
% | x %y | computes the reminder of dividing x by y
Examples:
i+ 1 (x"fy)%s b*b-4%a*%c

Some remarks for integer arithmetic operators:

= The result contains only the low-order bits of the mathematical
result in case of the arithmetic overflow.

Examples of use of ++ and --

Code:
int x = 5; 1int y;
Y = X++;
Results:
X =6 y =5
Code:
int x = 5; int y = 11; 1int z;
zZ = --X;

X =2% (y++ + 3) - Xx;

Results:



Relational Operators

Conditional Operators

Relational operators generate a boolean result.

Operator Use Returns true if

> opl > op2 opl is greater than op2

>= opl >= op2 | oplis greater than or equal to op2
< opl < op2 opl is less than op2

<= opl <= op2 | oplis less than or equal to op2
== opl == op2 | opl and op2 are equal

1= opl !'= op2 | opl and op2 are not equal

Examples:
i+1<n X == h[2%i+1] al=h

Bitwise Operators

Relational operators are often used with conditional operators.

Operator Use ' Returns true if
&& opl && op2 | opl and op2 are both true, conditionally eval-
uates op2

| opl || op2 | either opl or op2 is both true, conditionally
evaluates op2
! lopl oplis false

Examples:

I'(h >= 0)
(A <n) && (a[i++] > 0)

If (i>=n) then the value of i is not changed. If (i<n) then i is
incremented by 1.

Shift Operators

The bitwise operators allow to manipulate individual bits in an integral
primitive data type. Bitwise operators perform boolean algebra on the
corresponding bits in the two arguments to produce the result.

Operator Use Operation

& opl & op2 | bitwise and

[ opl | op2 | bitwise or

A opl A op2 | bitwise xor

~ ~0p bitwise complement

Examples:

0x36 & OxOF 0x06 (00110110 & 00001111)
0x36 | 0x80 0xB6 (00110110 | 10000000)
0x36 A 0x07 0x31 (00110110 A 00000111)

Shift operator shifts the bits of the left-hand operand over by the
number of positions indicated by the right-hand operand. The shift
occurs in the direction indicated by the operator itself.

Operator Use Operation
>> opl >> op2 shift bits of opl right by distance op2
<< opl << op2 shift bits of op1 left by distance op2
>>> opl >>> op2 | shift bits of opl right by distance op2
0x36 << 2 0xD8 (00110110 -> 11011000)
-1 -1 (decimal)
-1>>1 -1 (decimal)
-1 >>> 1 2147483647 (decimal)
-1 11111111117121111111112111111111111  (binary)
-1>>1 11111112121271111111111171712171111111  (binary)

-1 >>> 1 011111111133111713311113111111111 (binary)



Ternary Operator (?:

The ternary operator allows to avaluate expresseion in two diferrent
ways depending on some condition.

The expression is of the form:

cond ? exprl : expr2
The boolean condition cond is evaluated first. If it is true then exprl
is evaluated and the resulting value is the value of the whole

expression. When cond evaluates to false then expr2 is evaluated
and the resulting value is the value of the whole expression.

Example:
(n>1) 7?2 C+b): (@*b

When (n>1) then the result is (a+b), otherwise the result is (a*b).

Assignment Operators (cont.)

Assignment Operators

Examples of assignment statements:

x = (z+y) *alil;
ali++] = x + y;

Note that an assignment expression is not the same thing as an
assignment statement.

The following construction is legal, but the resulting code is not very
clear:

int y, Xx;
Xx=3%(y=2)+1;

The results are:
X =7 y =2

The basic form of assignment is
exprl = expr2

Evaluation:

1. The left hand side (exprl) is evaluated. It must by an Ivalue -
a variable, an element of an array, a field.

2. The right hand side (expr2) is evaluated.

3. The value of the right hand side is stored into the place denotec
by the left hand side.

4. The value of the whole expression is the value of the right hand
side.

Examples of assignment expressions:

x = (z +y) * ali]
ali++] = x + vy

Compound Assignment Operators

There other assignment operators of the form op= where op is some
binary operator:

*= [= %= += -= <<= >>= &= A= |=
The meaning of
exprl op= expr2
is the same as
exprl = exprl op expr2

except that exprl is evaluated only once.

For example, the statement X *= 6;
has the same effect as X =X * 6;
Notice that ali++] += 3;

is not the same as ali++] = al[i++] + 3;



Cast Expression

Priority of Operators

The following assinment between variables of different types is
possible:

byte b; 1int 1;

i =.b;
The following assignment is illegal:
b =1;

It can be assigned using the cast of the form
(type)expril

which transforms the value of exprl to the type type as in the
following code:

b = (byte)i;

Associativity of Operators

Operators ordered by priority (from lowest to highest):

Pr. | Operators

1.1 O

2. | [1, postfix ++ and --

3 unary +, unary -, ~, !, cast, prefix ++ and --

4. 1 *, /. %

5.+ -

6. | <<, >>, >>>

7. | <, >, <=, >=, instanceof

8. | ==, I=

9. | &

10. | A

11. | |

12. | &

13. | ||

14. | ?:

15. | =, *=, /=, %=, +=, —-=, <<=, >>=, >>>=, &=, A=, |=
Statements

Most binary operators are associative to the left.
For example

a+b+c

has the same meaning as

(a+b) +cC

An exception are the asignment operators that are associative to the

right.
For example

a=b=c

has the same meaning as
a=((b-=o0)

One of the basic types of statements is an assignment statement:
a=>b + c;

Assignment statement must end with semicolon (;).

Some other types of expressions can be also used as statements:
T++;
sum(a, b);

A declation can be also used as a statement:
int 1;
double x, y, z;
A declaration can be combined with an assignment of an initial value:

int i = 4;
double x = 46.3, vy, z =1 * 2.0;



Blocks

Blocks are sequences of statements enclosed between { and }.
Example:

{
a = 3;
int b = a + 1;
a=>b 2;

}

The scope of a declation of a local variable is from the place where it
is declared to the end of the enclosing block.

A block can be used in any place where a single statement can be
used.

Iteration Statements

Branching Statement

Java provides three iteration statements. The statements repeat their
bodies until controlling expression evaluates to false.

= while
int i = 0;
while (++i < 2)
System.out.printin("i: " + 1i);
= do-while
int i = 0;
do {
System.out.println("i: " + 1i);

} while (++i < 2)

= for

int powerOfTwo = 1;
for (int i = 0; i < 16; i++)
powerOfTwo <<= 1;

The if-else statement is probably the most basic way to control
program flow.

if (value > value2) {
result = 1;

else if (valuel < value2) {

result = -1;
3
else {

result = 0;
}

Similarly we can use:

if (value > value2) result = 1;
else if (value < value2) result = -1;
else result = 0;

Driving Iteration Statements

Inside the body of any of the iteration statements flow of the loop cal
be controlled using break and continue statements. break quits th
loop without executing the rest of the statements in the loop.
continue stops the execution of the current iteration and goes back
to the beginning of the loop to begin the next iteration.

int i = 0;
while (true) {
if (i > 20)
break;
if (i++ %7 == 0)
continue;
i += 2;
}



Driving Iteration Statements

The break and continue normally only alter the closest looping
structures. If there are nested statements, labeled break and
continue can be used to alter outer looping structures.
int i = 0;
outer:
while (true) {
while (true) {

4+

if (G == 1)
break;

if (3 == 4)

break outer;

3
while (true) {

4+

if (A == 2)
continue;

if (3 == 3)

continue outer;

Array

The switch Statement

An array is a structure that holds multiple values of the same type.
The length of an array is established when the array is created. After
creation, an array is a fixed-length structure. Array identifier is
actually a reference to a true object that holds the references to the
other objects.

double gears[] = new double[5];

gears[0] = 4.624;
gears[1l] = 3.231;
gears[2] = 2.893;
gears[3] = 1.052;
gears[4] = 0.962;

Sometimes it is convenient to initialize an array immediately during its
declaration.

double gears[] = {4.624, 3.231, 2.893, 1.052, 0.962};

Note: Although the new operator is not presented, the array is allocated
dynamically (compiler does it for us).

The switch statement is used to test an integral expression against
one or more possible cases.

char ch;
boolean whitespace;

switch (ch) {
case ' ':
case '\n':
case '\t':
case '\r':
whitespace
break;
default:
whitespace

true;

false;

Array (cont.)

The index of array elements start from 0.

When an array contains n elements, the elements have indexes from |
to (n-1).

Special attribute Tength contains the number of elements in the array
When for example

int[] a = new int[10];
int n = a.length;

The following form of a declaration of an array are possible, they are
both equivalent:

int[] a;
int a[]l;



Array (cont.)

When we declare a variable such as
int[] a = new int[10];
it is a reference to an array. So after assignment
int[] b = a;

both a and b point to the same array and when we change a value of
a[0], the value of b[0] is also changed.

Manipulating Arrays

Multidimentional Array

The java.lang.System.arraycopy() method provides efficient
copy of data from one array into another.

char from[] = {'a', 'b', 'c', 'd', 'e', 'f'};
char to[] = new char[3];
System.arraycopy(from, 2, to, 0, to.length);

Note: Destination array must be allocated before arraycopy() is called
and must be large enough to contain the data being copied.

Multidimentional array is in fact one-dimentional array containing
arrays as its elements.

final byte EMPTY = 0;
final byte CIRCLE = 1;
final byte CROSS = 2;
byte board[][] = {
{EMPTY, CIRCLE, CROSS},
{CIRCLE, EMPTY, CROSS},
{EMPTY, CIRCLE, EMPTY}
};
for (int i = 0; i < board.length; i++)
for (int j = 0; j < board[i].length; j++)
System.out.println("board[" + i + "J[" + j + "] =" +
board[i]1[j1);

Note: The length is not a method. The Tength is a property provided by
the Java platform for all arrays.

Method Definition

A definition of a method begins with a header that if followed by a
body of the method.

The header has the following format:

type name ( args )

where

= name is the name of the method

= type is a return type of the method

= args is a comma separated list of arguments, it may be empty
Each argument is of the form type name.

The body of a method is a block (i.e., statements enclosed between {
and 1}).



Method Definition (cont.)

The return type may be void if the method does not return a value.
When the return type is not void the method must return a value
using the command

return expr;
An example:

int gcd(int a, int b)

while (b != 0) {

int c = a % b;
a = b;
b =c;

b

return a;

3

If the return type is void the following form of the return statement
can be used:

return;

Object-Oriented Modeling

Method Invocation

Object-oriented modeling is a method that models the characteristics
of real or abstract objects from application domain using classes and
objects.

= Objects
Software objects are modeled after real-world objects in that
they too have state and behavior.
= A software object maintains its state in one or more
variables (attributes).

= A software object implements its behavior with methods
that manipulate these variables.

= Messages

Software objects interact and communicate with each other by
sending messages. When object A wants object B to perform one
of B's methods, object A sends a message to object B.

A method is called using its name that is followed by a comma
separated list of parameters between paranthesis.

Any expression can be used as a parameter.

All parameters are evaluated and assigned to the arguments of the
method.

A method invocation can be used in expression. The value of the
expression corresponding to the method invocation is the return
value returned by the method.

An example:
int x, vy;
x = gcd(24, 18);
y = gad(x + 1, 36);

Messages

Sometimes, the receiving object needs more information to know
exactly what to do. This information is passed along with the
message as parameters.

Message sending requires the following information:
= the object to which the message is addressed,
= the name of the method to perform,
= any parameters needed by the method.

The sending of a message can have any of the following effects:
= The state of the receiving object is changed.

= Some other actions are performed (including sending another
messages to some objects).

= Some information is returned to the sending object.



Examples of Objects

Class

Objects in a program correspond to objects from the application
domain.

Information system of a bank: accounts, transactions, clients, other
banks

Chess playing program: chess pieces, a chessboard, positions,
moves, games, strategies

Action game: monsters, weapons, walls, doors, flying bullets, a
score counter

Drawing application: lines, rectangles, circles, arrows, text fields,
line styles, line colors

GUI toolkit: windows, buttons, menus, menu items, icons

Instances

In the real world, many objects of the same kind exist. Using
object-oriented terminology, the objects are instances of a class.

A class is prototype that defines variables and methods common to a
objects of a certain kind.

Graphical representation of a class:

| — class name

Fraction ==

numerator: int
denominator: int [~ attributes

add(Fraction f)
mul(Fraction f)

. —— methods
normalize()

Java Class

Objects are instances of the given class. Each object has its own
identity.

Fraction

a: Fraction \

numerator: int

. . numerator = 2
denominator: int

denominator = 3

add(Fraction f)

mul(Fraction f)
normalize() \

b: Fraction

numerator = 1 J

c: Fraction _
denominator = 2

T

numerator = -6
denominator = 4

T
N B

Java defines classes using the class keyword. Definition of a class
may contain declarations of variables, definitions of methods or even
nested classes.

The order of class members is not important.

class Fraction

{
int numerator;
int denominator;
void mul(Fraction f)
{
numerator *= f.numerator;
denominator *= f.denominator;
}
}

Note: Standard convention is that class names start with an upper-case
letter and class member names (attributes and methods) start with a
lower-case letter.



Java Objects

An instance of a class can be created using new operator. It allocates
required space on the heap, provides initialization and returns
reference to the newly created instance.

Fraction a = new Fraction();

The attributes of a object can be accessed using the reference to the
object and the dot (.).

a.numerator = 2;
a.denominator = 3;

The methods of an object are accessed similarly.
Fraction b = new Fraction();
b.numerator = -6;
b.denominator = 4;

a.mul(b);

How To Destroy Objects?

References

There is no need to destroy objects explicitly in Java, since it uses
automatic memory management - garbage collector.

Whenever there is no reference to an object, the object can be
destroyed and the memory used by this object is freed.

The garbage collector takes into account circular dependencies.

The references are just pointers to objects in memory. So after the
following assignment the both a and c point to the same object.

Fraction c = a;

a| F+———=

d [=]

There is a special reference value nul1 that denotes reference that
does not point to any object.

Fraction d = null;

It is an error to access attributes or methods using a reference with
the null value.

The this Keyword

The this keyword produces the reference to the object the method
has been called for.

An instance

this

| -y

Examples (it is possible to omit this in most cases):

Fraction a, b;

this.numerator = 3; numerator = 3;
this.denominator = 2; denominator = 2;
this.add(a); add(a);

b.mul(this);



Overloading of Methods

The methods in Java can be overloaded. This means that there can be
more methods with the same name in a class. The methods must
differ in the number and types of their parameters.

The method that is actually called is chosen depending on the number
and types of parameters.

The return types of overloaded methods need not be all the same.

class Fraction {

void add(int x) { ... }
void add(int num, 1int den) { ... }
void add(Fraction f) { ... }

Encapsulation (cont.)

Encapsulation

Encapsulation (also information hiding) is the separation of the
external aspects of an object (accessible from other objects) from the
internal implementation details (which are hidden from other objects).

The implementation of an object can be changed without affecting the
other parts of an application that use it.

In a purely object-oriented design the attributes of an object are
always private and the only way to access them is through the
methods that manipulate them.

The use of keywords private and publ-ic allows to promote
encapsulation.

Note: If none of keywords private and public is used then the member
can be accessed from other classes. However, there are differences

between using and not using the keyword pub1ic. They will be discussed
later. There is also a keyword protected that will be discussed later too.

Some attributes and methods can be marked as private. Such
attributes and methods can be accessed only from methods in the
class where they are defined. An attempt to access them from
methods in other classes produces a compile-time error.

Attributes and methods can be also marked as publ1ic. Such
attributes and methods can be accessed from any other class.

class Fraction

t private int numerator;
private int denominator;
public void set(int num, int den) { ... }
public int getNumerator() { ... }
public int getDenominator() { ... }
}

Initialization of an Object

After the creation of a new object (using new), all its attributes are se!
to zero:

= numeric values (int, Tong, char, float, ...) are setto 0
= boolean values are set to false
= references (to objects and to arrays) are set to null

It is possible to set attributes to some specified values using explicit
initialization:

class Fraction
{
int numerator

int denominator =

1;



Constructors

A more elaborate initialization of an object can be implemented using
constructors.

Constructor resemble methods, but there are some differences:
= The name of a class must be used as a name of a constructor.
= Constructors can not return values.

= A constructor can be invoked only in the time of the creation of
an object (using new).

class Fraction {
Fraction(int numerator, 1int denominator) {

this.numerator = numerator;
this.denominator = denominator;

Fraction a = new Fraction(3, 5);
a.add(new Fraction(l, 3));

Constructors (cont.)

Constructors (cont.)

Constructors can call other constructors. The keyword this can be
used for this purpose. An invocation of another constructor can be
used only as the first statement of a calling constructor's body.

class Fraction {

Fraction() {
this(0);
}

Fraction(int x) {
this(x, 1);
3

Fraction(int num, int den) {
numerator = num;
denominator = den;

Some additional remarks concerning constructors follow:

= Constructors may be overloaded, similarly as methods.

= Constructors can be marked as public, protected and
private, similarly as methods.

= When no constructor is defined then the default constructor tha
does nothing is defined automatically, as if the following empty
constructor would be put in the code:

class Fraction

{
Fraction() { }

}

= If there is explicitly defined at least one constructor, the default
empty constructor is not defined automatically.

Static Members

Variables and methods defined by a class can be of two types:
instance and class (static). Class members are distinguished from
instance ones by the static keyword.

= Instance Members

= Instance Variable
Any item of data that is associated with a particular object.
Each instance of a class has its own copy of the instance
variables defined in the class.

= Instance Method
Any method that is invoked with respect to an instance of
a class.

= Class Members

= Class Variable
A data item associated with a particular class as a whole, nc
with particular instances of the class.

= Class Method
A method that is invoked without reference to a particular
object. Class methods affect the class as a whole, not
a particular instance of the class.



Static Members (cont.) Static Members (cont.)

= Instance Variables and Methods An example of use of static members:
They can be accessed only using a reference to some object.
obj.variable, obj.method() class Test {

private static int count = 0;

= Class (Static) Variables and Methods e

The keyword static is used to denote them. There is always

exactly one copy of a static variable shared by all instances of public static int getCount() {
the given class. return count;
static int count; }
static int getCount() {...} . .
static void main(String[] args) {...} public Test(int x) {
this.x = x;
Class member are usually accessed using the class name. ) count++;
Test.count = 0;
int ¢ = Test.getCount(); public int getvalue() {
When they are accessed inside a given class, the class name can 1 AL 26
be omitted. }

Static Members (cont.) Static Initializers
There is exactly one copy of the static variable count in the memory. The static members can be initialized using static initializer of the
Each instance of the class Test has its own copy of the instance form
variable x. static { ... }

The code may contain more than one static initializer. They are
class Test evaluated together with initializations of static variables in a textual
order as they appear in a source file.

Static initializers are executed only once when the class is loaded intc
memory.

X =5

X =3




Static Initializers (cont.)

class StaticInitializerExample {

static 1int x;

static {
X = 3;
System.out.println(x);
}
static int y = 4;
static {
y = 1;
System.out.println(y);
}
}
produces the following output:
3
1

Inheritance (cont.)

Inheritance

Class Point represents a point in a plane.
Subclass ColorPoint adds information about color. It inherits

attributes x and y and the method move () from its superclass Point.

Point

X,y: int

move (dx, dy)

ColorPoint

color: int

setColor(c)

Object-oriented systems allow new classes to be defined in terms of
previously defined class.

All variables and methods of the previously defined class, called
superclass, are inherited by subclasses. Subclasses can add some
new variables and methods.

There is a hierarchical relationship between a superclass and its
subclasses.

Vehicle

A

Pick-up Truck Tractor

Inheritance (cont.)

Java supports inheritance through the extends keyword. Only single
inheritance is supported, i.e. a subclass can be inherited from exactly
one superclass.

class Point {
private int x, y;

public void move(int dx, int dy) {
X += dx; y += dy;
3
3

class ColorPoint extends Point {
private int color;

public void setColor(int c) {
color = c;
}



Hierarchy of Classes

Use of Subclasses

Inheritance gives rise to a whole hierarchy of classes, because other
subclasses can be inherited from subclasses of a class. Every class is
a subclass of the special class Object.

Object

Point String Fraction

!_—A_\ | - | |
!_A_\ !_A_\

Use of Subclasses (cont.)

Subclasses can be used as any other classes. Attributes and methods
can be accessed as usual:

ColorPoint p = new ColorPoint();
p.setColor(3);

p.x = 45;

p.move (10, 20);

Reference to an instance of a class can also point to an instance of its
subclass. For example a reference to the class Point can point to an
instance of its subclass ColorPoint:

ColorPoint p = new ColorPoint();
Point q = p;

g.move(60, -40);

Point r = new ColorPoint(Q);

Cast Operator

However only attributes and methods declared in the class can be
accessed using reference of the given type. Attributes and methods
declared in its subclasses can not be accessed using this reference.

Point r = new ColorPoint(Q;
r.setColor(10); // Compile error! Method setColor()
// 1s not defined in the class Point.

An instance of a subclass of a class can be assigned to a reference to
the given class. On the other hand, it is a compile-time error to
assign to a reference to some class an expression of type reference to
its superclass:

ColorPoint c new ColorPoint();
Point q = c; // 0.K.
ColorPoint t qa; // Compile error!

Note: Every instance of ColorPoint is also an instance of Point. There
can be instances of Point that are not instances of ColorPoint.

It is possible to use cast operator to convert a reference to some clas
to a reference to its subclass:

Point q = new ColorPoint();

ColorPoint t = (ColorPoint)q; // Both q and t point to
// the same object.

t.setColor(4); // 0.K.

g.setColor(4); // Compile error!

The following usage is also possible:

((ColorPoint)q) .setColor(4);

When the instance is not an instance of the class used in the cast
operator, a run-time error occurs (an exception is thrown).

Point q = new Point();
ColorPoint t = (ColorPoint)q; // Run-time error occurs.



The instanceof Operator

The instanceof operator determines whether a given object is an
instance of particular class or type.

The syntax is:

expr instanceof type

where expr represents an expression that evaluates to a reference
and type is a name of a class.

The result of the instanceof operator is true if the value of expr is
not nul1 and could be cast to the type without raising an exception.
Otherwise the result is false.

Point p;

1f.&é instanceof ColorPoint) {
((ColorPoint)p).setColor(5);
}

Note: If it is clear at compile-time that the value of the expression can not
be an instance of the given class, a compile error is produced.

Polymorphism

The final Classes

A subclass can override methods of its superclass, i.e., it can provide
its own implementation of these methods.

class Point {

public void print() {
System.out.print("(" + x + "," +y + ™");
}

}
class ColorPoint extends Point {
public void print() {

System.out.print("(" + x + "," + y + ", color=" +
color + ")");

When a class is marked as final no subclasses can be inherited fron

this class.

In the following example, we can not declare the class ColorPoint a

a subclass of the class Point, since the class Point is final.

final class Point

{
}

class ColorPoint extends Point // Compile error!

{
}

Polymorphism (cont.)

If an overridden method is called, the method in the subclass is
always used. The overridden method in the superclass is not
accessible from other objects.

ColorPoint c = new ColorPoint();

Point p = c;

c.print(); // The method print() defined in the class
p.print(Q); // ColorPoint is called in both cases.

The code that calls overridden methods does not need to be aware of

different implementations of the methods in different subclasses.

Point[] points = new Point[10];
points[0] = new ColorPoint();
points[1] new Point(Q;

for (int i = 0; i < points.length; i++) {
points[i].printQ);
}



The super Keyword

The super keyword can be used to access members of a class
inherited by the class in which it appears.

In particular it is the only way to access overridden methods.
class Point {

puBi%c void print(Q) {
System.out.print("(" + x + "," +y + ")");
}

1
class ColorPoint extends Point {
public void print() {
super.print(); // calls the method print() 1in

// the class Point
System.out.print(", color=" + color);

Inheritance and Constructors

The final Methods

Constructors are not inherited. The subclass must define its own
constructors.

The constructors in the subclass can call a constructor of the
superclass using the keyword super.

class Point {
public Point(int x, int y) {
this.x = x; this.y = y;
3

}

class ColorPoint extends Point {
public ColorPoint(int x, int y, int c) {
super(x, y); // The constructor in the class

// Point 1is called.
color = c;

A method can be marked as final. Such methods can not be
overridden in subclasses.

class Point {

puBi%c final void print() { // Marked as 'final'.
System.out.print("(" + x + "," +y + ")");
}

}

class ColorPoint extends Point {

public void print() { // Compile error! Can not overrid
// final method.
System.out.print("(" + x + "," + y + ", color=" +
color + ")'");

Inheritance and Constructors (con

When no constructor of the superclass is called explicitly in the
constructors in the subclass, the constructor with no parameters is
used, as if the following construction would be put at the beginning ¢
the constructor:

{

super() ;

It is an compile-time error if the superclass does not define (either
implicitly or explicitly) the constructor with no parameters in this case



Abstract Classes

An abstract class is an incomplete description of something; a set of
operations and attributes that, in themselves, do not fully describe an
object.

Abstract classes are used as common superclasses of some classes
and they contain common attributes and methods of these classes.

Abstract classes can not be instantiated, but their non-abstract
subclasses can.

Figure +—— abstract class
Line Polygon Circle

Abstract Methods

Abstract Classes (cont.)

Abstract classes can contain abstract methods. Such methods are
marked with the keyword abstract and have only header, their body
is replaced with a semicolon (;).

abstract class Figure {

absiééct void draw(); // abstract method
}

Every abstract method must be implemented in non-abstract
subclasses.

class Line extends Figure {

void draw() { // implementation of the abstract method
// <- draws the Iline
}

Note: Every class containing a non-implemented abstract method (either
directly or inherited) must be declared as an abstract class.

Abstract classes are declared with the keyword abstract.

abstract class Figure { // an abstract class

}
class Line extends Figure { // a non-abstract class

}

It is possible to use references to instances of an abstract class.

Figure a = new Line();
a.move (10, 20);

It is not possible to create instances of an abstract class.

Figure b = new Figure(); // Compile error!

Abstract Methods (cont.)

Abstract methods are called as any other methods - the
implementation in the corresponding subclass is called.

Figure[] figures = new Figure[100];
figures[0] = new Line();

figures[1l] = new Circle();
figures[2] new Polygon();

for.&%nt i =0; i < figures.length; i++) {
figures[i].draw(); // The method draw() of the
// corresponding class is called.



Interfaces

An interface is a named collection of method definitions (without
implementations). An interface can also declare constants.

A definition of an interface resembles a definition of a class, but the
keyword interface is used instead of the keyword class.

interface Drawable

{
void draw(); // methods
void highlight(int mode);
int HM_DARK = 0; // constants for
int HM_LIGHT = 1; // highlight mode
}

The definitions of methods must be the same as definitions of
abstract methods except that the keyword abstract is not used.

Interfaces (cont.)

Interfaces (cont.)

A references that point to any object implementing the given interface
can be used in the same way as references pointing to class instances.

Line 1T = new Line(Q);

Drawable d = 1;

d.draw(Q; // 0.K.

d.highlight(Drawable.HM_DARK); // O.K.

d.move (10, 20); // Compile error. The method
// move() is not deklared in
// the interface Drawable.

Only methods declared in the interface can be called using a reference
type corresponding to this interface.

We say a class implements an interface if it provides implementation
of methods in the interface (in the same way as it implements abstrac
methods).

The used syntax is illustrated in the following example.

class Line implements Drawable

{
pub11c void draw() {
. // a method that actually draws the 1in
}
pub11c void highlight(int mode) {
. // a method that actually highlights
// the Tline using the specified mode
}
}

Interfaces (cont.)

= An interface defines a protocol of behavior that can be
implemented by any class anywhere in the class hierarchy.

= An interface declares a set of methods but does not implement
them.

= A class that implements the interface agrees to implement all
the methods defined in the interface, thereby agreeing to certai
behavior.

= There is a hierarchy of interfaces similar to hierarchy of classes.
We talk about superinterfaces and subinterfaces.

interface DrawableFull extends Drawable

{
}

void fill1(int color);



Interfaces (cont.)

= A class can implement more than one interface. Names of
multiple interfaces are separated by comma (,).

class Polygon extends Figure implements
Drawable, Rotating {

= Methods declared in an interface are implicitly public and
abstract. It is not possible to change this.

= Attributes declared in an interface are implicitly publ-ic, static
and final, i.e., they represent constants. It is not possible to
change this.

= When a class implements an interface, it is essentially signing a
contract. Either the class must implement all the methods
declared in the interface and its superinterfaces, or the class
must be declared abstract.

The final Attributes

Interfaces (cont.)

Constant values can be declared using the keyword final.

final int NUMBER = 10;
We can assign a value to final attributes and (local) variables only in
their declarations or in constructors. An attempt to assign them a
value in normal methods results in a compile-time error.

NUMBER = 5; // Compile error!
A final attribute is usually declared as static, since it is not
necessary to have a copy of the same value in all instances, and one
common copy is sufficient.

static final int NUMBER = 10;

Note: Names of constant values are by convention formed from
upper-case letters and underscores (_).

The most significant differences between interfaces and abstract
classes:

= An interface cannot implement any methods, whereas an
abstract class can.

= An interface cannot declare any static methods, whereas an
abstract class can.

= An interface cannot declare instance variables, whereas an
abstract class can.

= An interface cannot declare non-final static attributes, whereas
an abstract class can.

= A class can implement many interfaces but can have only one
superclass.

= An interface is not part of the class hierarchy - unrelated classe
can implement the same interface.

The final Attributes (cont.)

One common usage of final attributes is to use them for
representation of possible values from some finite set of values -
enumeration of these values. To each possible element of the set we
assign some arbitrary integer value. In program we always use the
assigned symbolic names instead of integer values.

In this case names of attributes representing values from the set shar
a common prefix.

For example in a chess-playing program we can represent different
pieces using the following declarations.

// chess pieces

public static final int P_NONE
P_KING
P_QUEEN
P_BISHOP =
P_KNIGHT
P_ROOK
P_PAWN

oaouvih WNERERO



Packages

To make classes easier to find and to use, to avoid naming conflicts,
and to control access, programmers bundle groups of related classes
and interfaces into packages.

A package is a program module that contains classes, interfaces and
other packages (subpackages).

Each package has a name:
= a single identifier - a name of a top level package

= of the form Q. Id, where Q is a name of a package and Id is an
identifier - a name of a subpackage

Examples of package names:

points

java.lang
com.sun.security
drawing.figures

Canonical Names

Packages (cont.)

Each class or interface has a fully qualified (canonical) name that
specifies also the package to which it belongs.

For example, the fully qualified name of the previously defined class
Line is:

drawing.figures.Line

It is possible to use the same name for two classes or interfaces as
long as they belong to different packages (and so they have different
canonical names).

For example, can define another class Line in a package
net.connections with the canonical name:

net.connections.Line

The canonical name of a class or interface that belongs to the
unnamed package is the name of this class or interface, for example:

Line

A package to which a class or an interface belongs is specified at the
beginning of the source file containing this class or interface using
the following syntax, where name is the name of the package:

package name;
For example, a file Line.java may look like this:
package drawing.figures;
class Line extends Figure {

}

This specifies the class Line that belongs to the package
drawing.figures.

When no package is specified at the beginning of the source file, the
class or interface defined in this file belongs to a special unnamed
package.

Canonical Names (cont.)

We can always use a fully qualified name of a class or interface when
we refer to this class or interface:

drawing.figures.Line 1line = new drawing.figures.Line();

When we use a simple name (i.e., when we do not use the canonical
name) we refer to a class or interface in the current package:

Line Tine = new Line(Q);

A package may not contain two members of the same name, or a
compile-time error results. For example:

= The package drawing.figures cannot contain other class or
interface named Line.

= The package drawing.figures cannot contain a subpackage
Line.

= The package drawing cannot contain a class or interface namec
figures.



Public Classes and Interfaces

Only classes or interfaces declared publ-ic can be accessed in other
packages.

For example, the class drawing.figures.Line declared this way can
be accessed in all packages:

package drawing.figures;

public class Line extends Figure {

}

If it would be declared the following way then it can be accessed only
in (classes and interfaces in) the package drawing. figures:

package drawing.figures;

class Line extends Figure {

}

Import Declarations

Hierarchy of Packages

It is always possible to refer to classes and interfaces from other
packages using their canonical names.

It is possible to use import declarations to import classes and

interfaces from other packages and to refer to them using simple
names.

The are two types of import declarations:
= single type declarations - imports one class or interfaces

import drawing.figures.Line;

= import on demand declarations - imports all public classes and
interfaces from the given package

import drawing.figures.¥*;

A source file can contain any number of import declarations.

The hierarchical naming structure for packages is intended to be
convenient for organizing related packages, but has no other
significance.

For example there is no special access relationship between classes
defined in the following packages:

drawing.figures
drawing.figures.colors
drawing.menu

Package names correspond to directories in a file system. For exampl
the class drawing.figures.Line should be stored in a file named

drawing/figures/Line.java (on Unix)

resp.

drawing\figures\Line.java (on MS Windows)

Note: Files containing classes from the unnamed package should be
stored in the current working directory.

Import Declarations (cont.)

The file drawing/figures/Line. java contains:

package drawing.figures;
public class Line extends Figure {

}

The file drawing/menu/Commands. java contains:
package drawing.menu;
import drawing.figures.Line; // single type import

class Commands {
public Line createLine() { // Line refers to the class
Line 1ine = new Line(); // drawing.figures.Line



Import Declarations (cont.)

The file drawing/figures/Line. java contains:

package drawing.figures;
public class Line extends Figure {

}

The file drawing/menu/Commands. java contains:
package drawing.menu;
import drawing.figures.*; // on demand import
class Commands {

public Line createlLine() { // Line refers to the class
Line 1ine = new Line(); // drawing.figures.Line

Import Declarations (cont.)

Import Declarations (cont.)

Some remarks:

= When a class defined in a source file has the same single name
as the class imported using single type import declaration, a
compile-time error results.

So the following program causes a compile time error.
package drawing.menu;
import drawing.figures.Line;
class Line { // Compile error!

}

= It is also not possible to use more than one single type import
declaration with the same single name of a class or interface:

import drawing.figures.Line;
import net.connections.Line; // Compile error!

When a source file contains a single class (or interface) name then the
definition of the class is found using the following procedure:

= If the class is defined in the source file or if it is imported using
single type import declaration, the corresponding definition is
used.

= If the class with the given name is defined in the same package
(but in other file), that definition is used.

= If the class is defined in some package imported using on
demand import declaration, that definition is used.

= Otherwise a compile-time error results.

Note: Only public classes and interfaces can be imported from other
packages.

Import Declarations (cont.)

= When a source file contains single type import declaration and
there is a class with the same single name defined in the same
package, but in other file, then the class specified in the import
declaration is used.

= It is a compile-time error when a single name is used to refer to
a class that is defined in two or more packages imported using
on demand import declarations:

import drawing.figures.*; // contains class Line
import net.connections.*; // contains class Line

Line Tine = new Line(Q); // Compile error!
// Fully qualified
// name must be used.

= On demand import declarations do not conflict with single type
import declarations or with classes defined in the given package



Source Files

A Java source file (also called compilation unit) has the following
structure:

= package declaration
= import declarations
= type declarations
The ordering of these parts is mandatory. Each of them is optional.

= Package declaration is always of the form

package name;

where name is the (canonical) name of the package.

= Import declarations is a sequence of any number of import
declarations (single type and on demand).

= Type declarations is a sequence of any number of class and
interface definitions.

Ant

Source Files (cont.)

When we have a program consisting of many source files, we usually
do not run compiler manually, but use some special tool for it.

A standard tool used for this purpose for Java programs is called Ant.

= Dependencies between files can be specified using a special
language.

= It is not always necessary to compile all source files, but only
some of them. Ant automatically figures out which files should
be compiled and calls compiler on them.

= Ant is not a part of JDK, but can be downloaded from
http://ant.apache.org.

= Most of development environments use Ant internally for
management of projects.

= When a source file contains a public class or interface named X,
the name of the source file must be X. java.

= When a source file contains a class or interface named X that is
referred from other source files, the name of the source file
must be X.java

= The above rules mean that a file may contain at most one class
or interface that is either public or that is referred from other
source files.

= When source files are compiled, a file X.class is created for
each class or interface named X.

= Names of directories must correspond to names of packages.

Package Names

Packages java and javax and their subpackages are reserved for
standard classes, so no classes or interfaces should be defined by a
user in these packages.

A short overview of the most important standard packages:
= java.lang - fundamental classes for Java programming language

= java.util - miscellaneous utility classes ( abstract data types,
manipulation with date and time, ...)

= java.io - classes for input and output from and to files and for
manipulation with files

= java.net - classes for network communication

= java.awt - Abstract Window Toolkit - classes for creating user
interfaces and for painting graphics and images

= java.applet - classes for creating applets
= javax.swing - modern user interface Swing
= javax.sound - classes for working with sound



Package Names (cont.)

Package Names (cont.)

Some remarks:

= Classes and interfaces from package java.lang are always
automatically imported as if the following import declaration
would be used:

import java.lang.¥*;

= By convention package names contain only lower-case letters.

Access Control

When some packages are widely distributed the following convention
is suggested:

= We create a unique package name from an Internet domain nam
belonging to an organization that produces the package by
reversing this domain name component by component.

For example from a domain name
mycompany . com

we create a package name

com.mycompany

= All other packages are then created as subpackages of this
package.

This convention allows to avoid package names conflicts.

Classes Without Instances

Access to a member of a class can be specified using one of the
keywords public, protected or private, or it may not be specified
(default access):

= public - it can be accessed from any class

= protected - it can be accessed from any subclass and from any
class in the same package

= (default) - it can be accessed from any class in the same
package

= private - it can be accessed only from the class where it is
defined.

When we override a method in a subclass it must be declared with the
same or more permissive access than the method in the superclass.

The standard way how to define a class such that it is not possible to
create instances of this class is:

= to declare a constructor of no arguments and make it private
= never invoke this constructor
= declare no other constructors

Class of this form usually contains class methods and variables.

An example of such class is the class java.lang.Math containing
standard mathematical functions:

public final class Math {
private Math() { } // never instantiate this class

// class variables and methods



Modifiers Modifiers (cont.)

A modifier specifies some special property of a class, an interface, a Class modifiers:
method, an attribute, or a constructor. public abstract final strictfp

All possible modifiers in Java are: Field (attribute) modifiers:

public protected private public protected private

static abstract final static final transient volatile

native synchronized transient = Method modifiers:

volatile strictfp public protected private abstract static

final synchronized native strictfp

= Modifiers are used in front of a declaration. Constructor modifiers:

= The ordering of modifiers is not important when more than one public protected private
modifier is used. Interface modifiers:

= Some modifiers can be used only in some contexts. public

= At most one of keywords public, protected and private can
be used in one declaration.

= [t is an error to use the same modifier more than once.

Class java.lang.Object References
Class java.lang.Object is a common superclass of all classes. There are three reference types in Java:
All objects, including arrays, inherit methods of this class: = class references
= equals(Object obj) - tests if two objects are equal = interface references
= clone() - creates a copy of this object = array references
= toString() - returns a string representation of the object There are two types of objects in Java:
= hashCode() - returns a hash code value for the object = class instances
= getClass() - returns information about the class of the object = arrays
= finalize() - called by the garbage collector before the References are pointers to objects. They can have null value and
memory is freed there can be many references to the same object.
= wait(Q), notify(), notifyA11() - for synchronization of The class java.lang.Object is a superclass of all other class. A
threads variable of type Object can hold a reference to an instance of a class
or to an array.
int[] a={3,1, 5};
Object o = a;
Object p = new Object[10];




References (cont.)

Method equals()

It is possible to compare two references using operators == and !=:

= The result of == is true if both references point to the same
object or if they are both nulT.

= The result of == is false otherwise.
= The operator != works as a negation of ==.

= A compile-time error occurs if it is impossible to convert the
type of either operand to the type of the other by a casting
conversion.

Point a new Point(10, 20);

Point b new Point(10, 20);
System.out.println(a == b); // prints 'false'
Object c = a;

System.out.println(a == c); // prints 'true'

Method equals() (cont.)

The method
public boolean equals(Object obj)

defined in the class java.lang.Object can be used to compare two
different object if they are the same.

This method can be overridden in subclasses. If it is not overridden i
behaves as if the test

(this == obj)

was used.

The method equals() implements an equivalence relation:
= reflexive - x.equals(x) should return true,
= symmetric - if x.equals(y) then also y.equals(x),

= transitive - if x.equals(y) and y.equals(z) then also
x.equals(z),

= consistent - x.equals(y) should return always the same value
if objects pointed to by x and y has not changed,

x.equals(null) should return false.

Copying Objects

class Point {
private int x, y;

public boolean equals(Object obj) {
if (! (obj instanceof Point)) return false;
Point p = (Point)obj;
return (x == p.x & y == p.y);

3

public Point(int x, int y) {
this.x = x; this.y = y;

}
}
Point a = new Point(10, 20);
Point b = new Point(10, 20);
Point ¢ = new Point(30, 20);

System.out.println(a == b); // prints 'false'
System.out.println(a.equals(b)); // prints 'true'
System.out.println(a.equals(c)); // prints 'false'

The clone() method is intended for creation of a copy of an object.
The simplest way to make your class cloneable, is to add
implements Cloneable to class's declaration. For some classes the
default behavior of Object's clone() method works just fine. Other
classes need to override clone to get correct behavior.

= Shallow Copy
A clone of an original object is created only. All instance
variables of the clone have the same values as the ones of the
original, i.e. if a variable holds reference to an object, the
original and the copy refer to the same object.

= Deep Copy
Copies of an original object and all its instance variables are
created. Then, any modification of the original does not affect
its copy and vice versa.

Note: The clone() should never use new to create the clone and should
not call constructors. Instead, the method should call super.clone(),
which creates an object of the correct type and allows the hierarchy of
superclasses to perform the copying necessary to get a proper clone.



Copying Objects (cont.)

@ shallow copy

deep copy

Strings

Garbage Collection

Strings are sequences of characters (primitive type char).

There are two classes in Java that can be used to represent strings
(both are from the package java. lang):

= String
= StringBuffer

All string literals, such as "abc", are represented as instances of the
class String.

Strings are constants, their values cannot be changed after they are
created.

The class StringBuffer supports mutable strings.

Strings in Java are not arrays of characters. This means that char[] is
not String and vice versa.

However, character arrays can be used when we work with strings.
Also both classes String and StringBuffer use character arrays in
their internal implementation.

When garbage collector is ready to release a memory used for an
object, it will first call finalize() method, and only then the memor
is reclaimed. Usage of finalize() gives the ability to perform some
important cleanup at the time of garbage collection.

protected void finalize()

If there is some activity that must be performed before an objects is
no longer need, the activity must be performed by programmer. Java
has no destructor or similar concept, so an ordinary method
performing this cleanup must be created.

Note: It is not good idea to rely on finalize() being called, and
separate “cleanup” functions should be created and called explicitly.

Garbage collection can be characterized as follows:
= garbage collection is not destruction,
= some objects might not get garbage-collected,
= garbage collection is only about memory.

Class String

The easiest way how strings can be created is to use string literals:
String s = "abc";

Notice that no operator new is used in this case. The object of the
class String is created automatically in this case.

The class String has many different constructors:
= String(Q

String(String original)

String(StringBuffer buffer)

String(char[] value)

String(char[] value, 1int offset, int count)

String(byte[] bytes, String charsetName)



Class String (cont.)

char datal[] = {'a', 'b', 'c'};

String s = new String(data);

char data2[] = {'a', 'b', 'c', 'd', 'e', 'f'};
String t = new String(data2, 2, 3); // t = "cde";

The most important methods in the class String:
= int length() - returns the length of the string

= char charAt(int index) - returns the character at the
specified index

= boolean equals(Object obj) - compares two strings
String s = "abcdef";

System.out.printin(s.length(Q); // prints '6'
System.out.println(s.charAt(5)); // prints 'f'

System.out.printin(s.equals("abcdef")); // prints 'true'
System.out.println(s.equals("hell0™)); // prints 'false'

Class String (cont.)

Class String (cont.)

Methods for searching for a character in a string:
= int indexOf(int ch)
= int indexOf(int ch, int fromlndex)
= int lastindexOf(int ch)
= int lastindexOf(int ch, int fromlndex)

Methods for searching for a substring in a string:
= int indexOf(String str)
= int indexOf(String str, int fromIndex)
= int lastindexOf(String str)
= int lastindexOf(String str, int fromindex)

Note: The value -1 is returned if the searched character or substring is
not found.

Methods that transform strings to arrays:

= void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)

= char[] toCharArray()
= byte[] getBytes(String charsetName)
= byte[] getBytes()

Methods for comparison of strings:
= boolean equals(Object obj)
= boolean equalsignoreCase(String str)
= int compareTo(String str)
= int compareTolgnoreCase(String str)
= boolean contentEquals(StringBuffer sb)

Note: Methods compareTo() and compareToIgnoreCase() return a
negative integer, zero, a positive integer if the the specified string is
greater than, equal to, or less than this string.

Class String (cont.)

The methods for obtaining substrings:
= String substring(int beginIndex)
= String substring(int beginIndex, int endIndex)

String s = "abcdef";
System.out.println(s.substring(2,5)); // prints 'cde'

The methods for comparison of substrings:

= boolean regionMatches(boolean ignoreCase, int toffset, String

other, int ooffset, int len)
= boolean startsWith(String prefix, int offset)
= boolean startsWith(String prefix)
= boolean endsWith(String suffix)



Class String (cont.)

Strings - Example

Other methods that manipulate strings:
= String toLowerCase()

String toUpperCase()

= String concat(String str) - concatenates the specified string to
the end of this string

String replace(char oldChar, char newChar) - replaces all
occurrences of oldChar with newChar

String trim() - removes leading and trailing whitespace

There are also static methods called valueOf () that transform
different types of values to strings:

= static String valueOf(boolean b)
= static String valueOf(char c)
= static String valueOf(int i)

Strings - Example

public class Filename {
private String fullPath;
private char pathSeparator, extensionSeparator;

public Filename(String str, char sep, char ext) {
fullPath = str;
pathSeparator = sep;
extensionSeparator = ext;

}

public String getExtension() {
int dot = fullPath.TlastIndexOf (extensionSeparator);
return fullPath.substring(dot + 1);

}

public String getFilename() {
int dot = fullPath.TlastIndexOf (extensionSeparator);
int sep = fullPath.TlastIndexOf(pathSeparator);
return fullPath.substring(sep + 1, dot);

Class StringBuffer

public String getPath() {
int sep = fullPath.lastIndexOf(pathSeparator);
return fullPath.substring(0, sep);

}

The following code illustrates usage of Filename:

Filename myHomePage = new Filename("/home/mem/index.html",

NN
System.out.println("Extension = " + myHomePage.getExtension());
System.out.printin("Filename = " + myHomePage.getFilename());
System.out.printin("Path = " + myHomePage.getPath());

Produced output:

Extension = html
Filename = index
Path = /home/mem

The class StringBuffer implements a mutable sequence of
characters, the length and content of the sequence can be changed
through certain method calls.

The most important methods:

= int length()

= void setLength(int newLength)

= char charAt(int index)

= void setCharAt(int index, char ch)

= int capacity()

= void ensureCapacity(int minimumCapacity)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

e|ll|{l|lo]|,] |w|o|lr|l|d]!

Tength()=13 capacity()=19



Class StringBuffer (cont.)

The constructors:
= StringBuffer()
= StringBuffer(int length)
= StringBuffer(String str)

The most important methods used to modify a string buffer are:
= append - adds characters at the end of the buffer,
= insert - adds characters at a specified point.
StringBuffer b = new StringBuffer("abcd");

b.append("ef"); // 'b' contains 'abcdef'
b.insert(3, "ghi"); // 'b' contains 'abcghidef'

The contents of a string buffer can be transformed into a string using
the toString() method:

String s = b.toString(Q); // 's' contains 'abcghidef'

Class StringBuffer (cont.)

Class StringBuffer (cont.)

It is also possible to delete characters:
= StringBuffer delete(int start, int end)
= StringBuffer deleteCharAt(int index)

Other methods that manipulate string buffers:
= StringBuffer replace(int start, int end, String str)
= String substring(int start)
= String substring(int start, int end)

The methods for searching in string buffers:
= int indexOf(String str)
= int indexOf(String str, int fromIndex)
= int lastindexOf(String str)
= int lastindexOf(String str, int fromIndex)

Methods append and insert are overloaded so as to accept data of

any type:
= StringBuffer append(String str)
= StringBuffer append(StringBuffer sb)
= StringBuffer append(Object obj)
= StringBuffer append(charf] str)
= StringBuffer append(boolean b)
= StringBuffer append(char c)
= StringBuffer append(int i)
= StringBuffer append(double d)

= StringBuffer insert(int offset, String str)
= StringBuffer insert(int offset, char[] str)

Operator +
Operator + can be used for concatenation of strings:
String a = "Hello";
String b = ", world";
String c = a + b; // c = "Hello, world"

It is also possible to use +=:

String a = "Hello";

a += ", world"; i // a = "Hello, world"

If at least one of operands of + is a string, the other operand is

transformed into a string automatically:

"Result="+ 3 +2) ; // a
"Result=" + 3 + 2 ; // b

String a
String b

"Result=5"
"Result=32"



Operator + (cont.)

String buffers are used by the compiler to implement the string
concatenation operator +. For example, the code:

String Xx;

x ="a" + 4 + "c";

is compiled to the equivalent of:

String Xx;
X = new StringBuffer().append("a").append(4).append('c")
.toString();

It is usually more efficient to manipulate a StringBuffer then to
manipulate String. A new instance of String is created after every
operation.

Primitive Type Wrappers

StringBuffer - Example

Each primitive type has its object wrapper. Although usage of
primitive types is more efficient, there are some situations where
application of their object wrappers is either more convenient or just
inevitable.

Primitive type Size [bits] Wrapper class

booTean Boolean
char 16 Character
byte 8 Byte
short 16 Short

int 32 Integer
Tong 64 Long
float 32 Float
double 64 Double
void - Void

Instances of wrapper classes represent immutable values.

class StringBufferDemo {
static String toString(int[] a) {
StringBuffer buf = new StringBuffer("{ ");
for (int i = 0; i < a.length; i++) {
if (i > 0) buf.append(", ");
buf.append(alil);
}
buf.append(" }");
return buf.toString(Q;
}

public static void main(String[] args) {
int[] a = { 81, 32, 53, 21, 82 };
String s = toString(a);
System.out.println(s);

Output: { 81, 32, 53, 21, 82 }

Primitive Type Wrappers (cont.)

There is a common abstract superclass of Byte, Short, Integer,
Long, Float and Double called Number.

Wrapper classes contain also many useful static methods for
manipulation with values of the given primitive type:

= methods that transform the values of the primitive type to
strings

= methods that transform strings to the given primitive type
Wrapper classes for numeric types also contain static constants

MIN_VALUE and MAX_VALUE representing the minimal and maximal
value of the given numeric type.

short x = Short.MIN_VALUE; // x = -32768



Class Character

Class Character contains many static methods for testing if a
character belongs to the given category of characters:

= static boolean isLowerCase(char ch)

= static boolean isUpperCase(char ch)

= static boolean isDigit(char ch)

= static boolean isDefined(char ch)

= static boolean isLetter(char ch)

= static boolean isLetterOrDigit(char ch)
= static boolean isSpaceChar(char ch)

= static boolean isWhitespace(char ch)

= static boolean isISOControl(char ch)

Java uses 16-bit character encoding called Unicode. More information
about Unicode can be found at http://www.unicode.org.

Manipulation With Characters

ASCII Table

Some examples of manipulation with characters. Notice how
properties of ASCII are used.

= Transformation of a decimal digit to the numerical value:

static int decToNum(char c) {
if (c >= '0' && c <= '9') return c - '0';
return -1;

}
= Transformation of a hexadecimal digit to the numerical value:

static int hexToNum(char c) {
if (c >= '0' && c <= '9")

return c - '0';

else if (c >= 'A' & c <= 'F")
return c - 'A' + 10;

else if (c >= 'a' & c <= 'f")
return c - 'a' + 10;

return -1;

The first 128 characters of Unicode are the same as in the ASCII table
ASCIl - American Standard Code of Information Interchange

0 NUL 16 DLE 32 48 0 64 @ 8 P 96 112 p
1 SOH 17 DC1 33! 491 65A 81Q 97 a 113 q
2 STX 18 DC2 34 " 502 66B 8 R 98b 114 r
3 ETX 19 DC3 35 # 513 67C 83S 99 c 115 s
4 EOT 20DC4 36 $ 524 68D 84 T 100 d 116 t
5 ENQ 21 NAK 37 % 535 69 E 85U 101 e 117 u
6 ACK 22 SYN 38 & 546 70 F 8 V 102 f 118 v
7 BEL 23 ETB 39 ' 557 71 G 87 W 103 g 119 w
8 BS 24 CAN 40 ( 56 8 72 H 88 X 104 h 120 x
9HT 25 EM 41) 579 731 89Y 1051 121y
10 LF 26 SUB 42 = 58 : 743 90 Z 106 j 122 z
11 vT 27 ESC 43 + 59 ; 75K 91 [ 107 k 123 {
12 FF 28 FS 44, 60 < 76 L 92\ 108 1 124 |
13 CR 29GS 45 - 61 = 77M 93] 109 m 125}
14 SO 30RS 46 . 62> 78N 94 A 110 n 126 ~
15SI 31US 47/ 63 7? 790 95 _ 111 o 127 DEL

Class Character (cont.)

Class Character contains static methods for transformation of
characters to lower-case and upper-case:

= static char toLowerCase(char ch)
= static char toUpperCase(char ch)
These methods work for all Unicode characters.

Simplified version of toLowerCase() working only on ASCII
characters could look like this:

static char tolLowerCase(char c) {
if (c >= '"A' && c <= 'Z") {
return (char)(c - 'A' + 'a'");
}

return c;



Class Integer

Class Integer contains the following static method for
transformation of integer values to strings:

= static String toString(int i, int radix)

= static String toString(int i)

= static String toOctalString(int i)

= static String toHexString(int i)

= static String toBinaryString(int i)

Class Long contains similar methods that work with type Tong.
We can use the following methods to transform a string into an
integer:

= static int parselnt(String s, int radix)

= static int parselnt(String s)

= static Integer valueOf(String s, int radix)
= static Integer valueOf(String s)

= static Integer decode(String nm)

Classes Float and Double

Class Number

Classes Float and DoubTe contain static fields representing some
special values of types float and double:

= NaN - Not-a-Number
= NEGATIVE_INFINITY
= POSITIVE_INFINITY

These values can be used as any other float or double values.

There are also static methods that allow to test these special values:

= static boolean isNaN(float v)

= static boolean isInfinite(float v)

= static boolean isNaN(double v)

= static boolean isInfinite(double v)

The abstract class Number defines the following (instance) methods:

= byte byteValue()

= short shortValue()

= int intValue()

= long longValue()

= float floatValue()

= double doubleValue()

Each subclass of Number (Byte, Short, Integer, Long, Float,
DoubTe) implements these methods.

Subclasses of Number implemet static methods for transformation of
strings into the corresponding primitive type:

= Class Byte:
= static byte parseByte(String s, int radix)
= static byte parseByte(String s)

Class Math

The class java.lang.Math contains methods for performing basic
humeric operations such as:

= exponential

= logarithm

= square root

= trigonometric functions

The class Math contains two important static constants:
= E - Euler number, the base of the natural logarithms (2.71828..
= PI - number pi (3.14159...)

It is not possible to create instances of Math.
All methods are static.



Class Math (cont.)

Class Math (cont.)

Overview of methods:

static double exp(double a)

static double log(double a)

static double sqgrt(double a)

static double pow(double a, double b)
static double sin(double a)

static double cos(double a)

static double tan(double a)

static double asin(double a)

static double acos(double a)

static double atan(double a)

static double atan2(double y, double x)
static double toRadians(double angdeg)
static double toDegrees(double angrad)

Class Math (cont.)

Example of usage of mathematical functions:

double start = 0.0;
double end = Math.PI * 2.0;
double step = 0.05;

for (double x

One possible way how numbers can be rounded (except using the

double yl = Math.sin(x);
double y2 Math.cos(x);
System.out.print("x=" + x);
System.out.print(" sin(x)=

System.out.println(" cos(x)=

nmuninow

"+ yl);

method round()):

double a;

int i = (Ant)(a + 0.5);

Other methods:
= static double ceil(double a)
= static double floor(double a)
= static double rint(double a)
= static int round(float a)
= static long round(double a)
= static double random()
= static int abs(int a)
= static long abs(long a)
= static float abs(float a)
= static double abs(double a)
= static int max(int a, int b)
= static int min(int a, int b)

Method main()

start; x <= end; x += step) {

+y2);

At least one class in a program must contain the static method

public static void main(String[] args)

Such classes can be used to start programs:
$ java MyClass

The method main() usually creates instances of other classes and
calls their methods.

An argument to the method main() is an array of strings containing
command line arguments. For example when we use

$ java MyClass Hello World

in the method main() in the class MyClass we have

args.length = 2
args[0] "Hello"
args[1] "World"



Program Exit

Exceptions

The program exits when the method main() is finished.

Note: In fact, it is more complicated. Generally, program exits when all
threads are finished.

It is also possible to use the method exit() in the class
java.lang.System to exit program:

System.exit(0);

The argument of exit() is a a status code. By convention, a nonzero
status code indicates abnormal termination.

System.exit(1l); // an error occured

Exceptions - Example

An example of usage of exceptions:

public static void main(String[] args) {

try {
int ¢ = Integer.parseInt(args[0]);
while (c-- > 0) System.out.printin(args[1]);

}

catch (ArrayIndexOutOfBoundsException e) {
System.err.println("Missing argument");

3

catch (NumberFormatException e) {

System.err.println("\"" + args[0] +
"\" isn't an integer");

Usage: java Example 3 xyz

The Java programming language provides a mechanism known as
exceptions to help programs report and handle errors:

= When an error occurs, the program throws an exception.

= The normal flow of the program is interrupted and the runtime
environment attempts to find an exception handler, a block of
code that can handle a particular type of error.

Exception - an event that occurs during the execution of a program
that disrupts the normal flow of instructions.

An object containing an information about the event is also
called an exception.

Exceptions - Motivation

Let us consider a method that reads an entire file into memory. In
pseudo-code it looks like this:

readFile {
open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

What happens if the file can't be opened?

What happens if the length of the file can't be determined?

What happens if enough memory can't be allocated?

What happens if the read fails?

What happens if the file can't be closed?



Exceptions - Motivation (cont.)

errorCodeType readFile {
initialize errorCode = 0;
open the file;
if (theFileIsOpen) {
determine the length of the file;
if (gotTheFileLength) {
allocate that much memory;
if (gotEnoughMemory) {
read the file into memory;
if (readFailed) {
errorCode = -1;
}
} else {
errorCode = -2;

}
} else {
errorCode = -3;

3

Exceptions - Motivation (cont.)

Exceptions - Motivation (cont.)

readFile {
try {

open the file;
determine 1its size;
allocate that much memory;
read the file into memory;
close the file;

catch (fileOpenFailed) {
doSomething;

catch (sizeDeterminationFailed) {
doSomething;

catch (memoryAllocationFailed) {
doSomething;

catch (readFailed) {
doSomething;

catch (fileCloseFailed) {
doSomething;

L = T SO L e

c1osé éhé file;
if (theFileDidntClose && errorCode == 0) {

errorCode = -4;
} else {
errorCode = errorCode and -4;
}
} else {
errorCode = -5;

}

return errorCode;

Exception Objects

When an error occurs in Java:

= An exception object is created, it contains information about th
exception (its type, the state of the program when the error
occurred, ...).

= Normal flow of instructions is disrupted.
= The runtime system finds some code to handle the error.

An exception object is always an instance of some subclass of the
class java.lang.Throwable. There are many standard exception
classes and it is possible to define own exception classes.

Creating an exception and handing it to the runtime system is called
throwing an exception.

The code that handles the exception is called an exception handler.
The exception handler is said to catch the exception.

Which exception handler is chosen depends on the type of the
exception object.



Catching Exceptions

There are three main components of a code that catches exceptions:
= the try block
= the catch blocks
= the finally block

The syntax is:
try {

}ca'.cd.l ( oo f
}ca'.ch:n ( o0 f
} finally {

)

A try block must be accompanied by at least one catch block or one
finally block.

The catch Block(s)

The try Block

The general form of a catch block is:

catch (SomeThrowableObject variableName) {
// Java statements
}

A class SomeThrowableObject is a subclass of java.lang.Throwable.
It declares the type of exceptions the handler can handle.

The variable variabTleName is the name by which the handler can
refer to the exception.

This is a declaration of a local variable variableName. The scope of
this variable is the body of the catch block.

The variable variableName can be used as any other local variable:

variabTeName.getMessage();

Note: The conventional name used for these types of variables is e.

In general a try block looks like this:
try {

}

// Java statements

A try block is said to govern the statements enclosed within it and
defines the scope of any exception handlers.

If an exception occurs within the try statement, that exception is
handled by the appropriate exception handler associated with this tr
statement.

There can be any number of the catch blocks, but at most one
finally block.

The catch Block(s) (cont.)

The catch block contains a series of statements that are executed
when the exception handler is invoked:

= If no exception occurs in the try block, all its catch blocks are
skipped and the execution continues after them.

= If an exception of type T occurs in the try block and there is a
catch block handling exceptions of type T (or its superclass),
then this block is executed.

If there is more than one handler that handles exceptions of
type T then the first one matching handler is used.

= If there is no such handler, the runtime system looks for some
other enclosing try statement and its handlers.

Note: Exceptions can be thrown everywhere, even inside the catch
blocks.



The catch Block(s) (cont.)

The typical use of exception handlers:

try {

} catch (ArithmeticException e) {
System.out.println("Caught ArithmeticException: " +
e.getMessage());
} catch (IOException e) {
System.out.println("Caught IOException: " +
e.getMessage());

Exceptions and Methods

The finally Block

A method need not catch all exceptions, it can also throw exceptions
to its caller.

If an exception of type T can occur in a method and the method does
not catch the exception of type T, then we must specify that the
method can throw an exception of type T.

To specify this, we add a throws clause to the header of the method:

public void readFile(String filename) throws IOException

{
}

If a method can throw more than one type of exception we must
specify all of them:

public Connection openConnection(Address addr)
throws ConnectException, UnknownAddrException {

The finally block provides a mechanism that allows to clean up the
state of a method regardless of what happens within the try block.

Statements in the finally block are performed after:
= the try block exited normally,

= an exception occurred in the try block and was caught by some
exception handler,

= an exception occurred in the try block and was not caught.

try {
. . . // opens a file and writes to it
} finally {
if (file !'= null) {
file.close();

}

Exceptions and Methods (cont.)

Any exception that can be thrown by a method is part of the method'
public programming interface: callers of a method must know about
the exceptions that a method can throw to intelligently and
consciously what to do about those exceptions.

Note: When a method is overridden in a subclass, it must not throw
exceptions not specified in the superclass.

There are two types of exceptions:

= runtime exceptions - exceptions that can occur almost
everywhere, they are usually produced directly by the runtime
system (arithmetic exceptions, pointer exceptions, indexing
exceptions).

= checked exceptions - all other exceptions (including user
defined exceptions).

The compiler checks that checked exceptions are either caught or
specified. Runtime exceptions need not be caught or specified.



Hierarchy of Exceptions

Hierarchy of Exceptions (cont.)

Throwable

Error Exception

RuntimeException

Hierarchy of Exceptions (cont.)

Subclasses of Throwable:

= Subclasses of Error - exceptions of that indicates serious
problems that a reasonable application should not try to catch.

= Subclasses of Exception - “normal” exceptions that a reasonabl
application might want to catch. User-defined exceptions shoul
be subclasses of Exception (but not of RuntimeException).

= Subclasses of RuntimeException - runtime exceptions, usually
produced by the runtime system. An application might want to
catch them.

Note: The classes Throwable, Error, Exceptions, and RuntimeException
are from the package java.lang.

It is not necessary to catch or specify subclasses of Error and
RuntimeException. All other exceptions must be either caught or
specified.

Throwing an Exception

It is convenient to hierarchize exceptions using inheritance. This
approach enables:

= grouping of error types
= error differentiation.

public class StackException extends Exception {
public StackException(String message) {
super (message) ;

}

public class EmptyStackException extends StackException {
public EmptyStackException() {
super("The stack is empty.");
}

Any Java code can throw an exception using the throw statement:

throw someThrowableObject;

The throw statement requires a single argument - a throwable object

An example of throwing an exception in an implementation of a stack

public Object pop() throws EmptyStackException {
if (size == 0) {
throw new EmptyStackException();
}

Object obj = objectAt(size - 1);
setObjectAt(size - 1, null);
size--;

return obj;



Class Throwable

The constructors of java.lang.Throwable:
= Throwable()
= Throwable(String message)
= Throwable(String message, Throwable cause)
= Throwable(Throwable cause)

The most important methods:
= String getMessage()
= Throwable getCause()
= Throwable initCause(Throwable cause)
= String toString()
= void printStackTrace()

Note: Every exception contains information about the call stack at the
moment when the exception was created.

Class RuntimeException

Class Error

The most important subclasses of java.lang.RuntimeException:

= ArithmeticException

IndexOutOfBoundsException
= ArraylndexOutOfBoundsException
= StringlndexOutOfBoundsException

= lllegalArgumentException
= NumberFormatException

= NullPointerException

= ClassCastException

= NegativeArraySizeException

= ArrayStoreException

= lllegalStateException

= UnsupportedOperationException

An Error is a subclass of Throwable that indicates serious problems
that a reasonable application should not try to catch. Most such error
are abnormal conditions.

The most important subclasses (in the package java.lang):

= VirtualMachineError
= OQutOfMemoryError
= StackOverflowError
= InternalError
= UnknownError

= LinkageError
= ThreadDeath
= AssertionError

Exception Advantages

The use of exceptions has the following advantages over traditional
error management techniques:

= Separating error handling code from “regular” code
A problem which can raise at many places in program can be
handled in only one place.

= Propagating errors up the call stack
Mechanism enabling propagation of exceptions over the call
stack enables transparent handling of errors raised in libraries.

= Grouping error types and error differentiation
Multiple types of errors can be handled similarly at one place.



Streams

Often a program needs to:
= bring in information from an external source, or
= send out information to an external destination.

The information can be:
= in a file on a disk
= somewhere on the network
= in memory
= in another program

Streams present an abstraction that allows to access (read or write)
such information sequentially.

Using the streams we can access sources and destinations of
information in a unified way no matter where they actually are.

Streams

Streams

The package java.io contains a collection of stream classes.
The stream classes are divided into two class hierarchies:

= Byte Streams - they work on streams of 8-bit bytes (binary
data). They are subclasses of (abstract) classes:

= InputStream - input streams
= OutputStream - output streams

= Character Streams - they work on streams of 16-bit characters
(text files). They are subclasses of (abstract) classes:

= Reader - input streams
= Writer - output streams

We distinguish two types of streams:
= input streams - programs read from them
= output streams - programs write to them

The algorithms for sequentially reading and writing data are basically
the same:

= Reading

open a stream

while more information
read information

close the stream

= Writing
open a stream
while more information

write information
close the stream

Streams

InputStream:

= int read()

= int read(byte[] b)

= int read(byte[] b, int off, int len)
OutputStream:

= void write(int b)

= void write(byte[] b)

= void write(byte[] b, int off, int len)
Reader:

= int read()

= int read(char[] cbuf)

= int read(char[] cbuf, int off, int len)
Writer:

= void write(int c)

= void write(char[] cbuf)

= void write(char[] cbuf, int off, int len)



Streams

File Streams

There are also other methods. All these classes contain method

= void close()

Note: The method close() can be called either explicitly, or implicitly by
the garbage collector.

The classes InputStream and Reader contain methods
= long skip(long n)
= boolean markSupported()
= void mark(int readAheadLimit)
= void reset()

The classes OutputStream and Writer contain method
= void flush()

Most of the methods that work with streams can throw
java.io.lOException (or some of its subclasses).

File Streams

The file streams read or write a file on the file system:
= FilelnputStream
= FileOutputStream
= FileReader
= FileWriter

An example of use of FileReader and FileWriter:

Reader in = new FileReader("input.txt");

Writer out = new FileWriter("output.txt");

int c;

while ((c = in.read()) >= 0) {
out.write(c);

}

in.close();
out.close();

File Streams

It is better to read and write bigger chunks of data:

InputStream in = new FileInputStream("input.txt");

OutputStream out = new FileOQutputStream("output.txt");

final 1int BUF_LEN = 8192;

byte[] buf = new byte[BUF_LEN];

int 1;

while ((1 = in.read(buf, 0, BUF_LEN)) >= 0) {
out.write(buf, 0, 1);

}

in.close();
out.close();

File streams can be created using:
= a file name (class String)
= a file object (class File)
= a file descriptor (class FileDescriptor)

For example, the class FileReader contains the following constructors
= FileReader(String fileName)
= FileReader(File file)
= FileReader(FileDescriptor fd)

Classes FileOutputStream and FileWriter contain also constructors

that allow to specify if an existing file should be overwritten or data
should be appended to it:

= FileOutputStream(String name, boolean append)
= FileOutputStream(File file, boolean append)



Class File Class File (cont.)

The instances of the class java.io.File represent files on the file We can use an object of class File also for manipulation with the
system. given file. We can for example:

It presents an abstract, system-independent view of hierarchical = create the file

pathnames.

= delete the file

We can create a File object for a file on the file system and query the = rename the file

object for information about the file, such as: = obtain a list of files in the directory
= the full path name = create a subdirectory
= the name of its parent directory = set time of modification
= if it is directory or a regular file = create temporary files

= if it is an absolute or relative pathname

5 e 0 GlEE Example of a deletion of a file:

= the length of the file String filename = "test.txt";
= the access rights (if it can be read and/or written) File f = new File(filename);
boolean ok = f.delete();
= other attributes (time of modification, if it is hidden, ...) System.out.printin(ok ? "0.K." : "Not deleted");
Class File (cont.) Filter Streams
Example of use of the class File: The java.io package provides a set of abstract classes that define anc

partially implement filter streams:
File input = new File("input.txt");

T I EaGeE0D) = FilterlInputStream

System.err.println("Error: file \"" + input.getName() + = FilterOutputStream
\" doesn't exist"); = FilterReader
return; ) )
} = FilterWriter
FileReader reader = new FileReader(input); Filter streams allow to combine features of streams and achieve

desired functionality.
A filter stream is constructed on another stream (the underlying
stream):

= The read method reads input from the underlying stream, filter
it and passes to the caller.

= The write method filters output and writes the resulting data tc
the underlying stream.




Buffered Streams

Other Types of Streams

An example of filter streams are buffered streams:
= BufferedinputStream
= BufferedOutputStream

= BufferedReader
= LineNumberReader

= BufferedWriter

An example of use of BufferedReader:

BufferedReader reader =
new BufferedReader (new FileReader("input.txt"));
String s;
while((s = reader.readLine()) !'= null) {
System.out.println(s);
}

Print Streams

Another type of filter streams are pushback streams:
= PushbacklnputStream
= PushbackReader

They add to streams the ability to “push back” or “unread” bytes or
characters.

The are streams for conversion between byte streams and character
streams:

= InputStreamReader
= OutputStreamWriter

Note: The character encoding used by these streams can be specified in
their constructors.

Reader r = new InputStreamReader (

new FileInputStream("input.txt"));

new OutputStreamWriter(

new FileOutputStream("output.txt"), "iso-8859-2")

Writer w

Print Streams (cont.)

Print streams allow to print values of different data types in a human
readable form:

= PrintStream
= PrintWriter

Unlike other streams the print streams never throw an IOException;
instead, exceptional situations merely set an internal flag that can be
tested via the checkError() method.

Optionally, they can be created so as to flush automatically after every
end of line.

The overloaded methods print() and println() are used to print
values of various data types:

= void print(boolean b)
= void print(char c)
= void print(int i)

The methods printin() should be used to print line separators
instead of using '\n" in printed strings.

In the following example

PrintWriter w = new PrintWriter(
new FileOutputStream("output.txt'));
w.print("HeTllo\n");

it is better to use

w.println("Hello");

Different platforms use different line separators:

Platform Decimal @ Chars
MS Windows 1310 "\r\n"
Unix 10 "\n"

MacOS 13 "\r"




Standard Input and Output

Three standard streams are streams are defined in the class
java.lang.System as static final variables:

= in - standard input (InputStream)
= out - standard output (PrintStream)
= err - standard error output (PrintStream)

All these streams are implicitly opened.
These streams should not be closed.

Standard input stream typically corresponds to keyboard input.

Standard output and error streams typically correspond to display
output.

All these streams can be redirected by a user to a file or another
program:

$ java MyClass < input.txt > output.txt
$ java MyClass < input.txt | Tless

Reading from URL

Stream Tokenizer

The streams are also used to represent network connections:

URL url = new URL("http://java.sun.com/docs");
InputStream in = url.openStream();
OutputStream out = new FileOutputStream("output.txt");
int c;
while ((c = in.read()) >= 0) {

out.write(c);
}

in.close();
out.close();

Note: The class URL is from the java.net package.

The StreamTokenizer class takes an input stream and parses it into

“tokens”, allowing the tokens to be read one at a time. The stream

tokenizer can recognize identifiers, numbers, quoted strings, and
various comment styles.

StreamTokenizer s = new StreamTokenizer(
new InputStreamReader(System.in));
s.eolIsSignificant(true);
Toop: while (true) {
switch (s.nextToken()) {
case StreamTokenizer.TT_EOF: break loop;
case StreamTokenizer.TT_WORD:
System.out.println("a word: " + s.sval); break;
case StreamTokenizer.TT_NUMBER:
System.out.println("a number:
case StreamTokenizer.TT_EOL:
System.out.printin("EOL"); break;
default:
System.out.println("other:
3

+ s.nval); break;

+ (char)s.ttype);

Data Streams

There are input and output streams for reading and writing primitive

data types in a binary (but portable) format:

= DatalnputStream
= DataOutputStream

The class DatalnputStream contains methods such as:
= void readFully(byte[] b)
= void readFully(byte[] b, int off, int len)
= boolean readBoolean()
= byte readByte()
= int readUnsignedByte()
= short readShort()
= int readUnsignedShort()
= int readInt()
= String readUTF()



Data Streams (cont.)

The class DataOutputStream contains methods such as:
= void writeBoolean(boolean v)
= void writeByte(int v)
= void writeChar(int v)
= void writelnt(int v)
= void writeLong(long v)
= void writeFloat(float v)
= void writeDouble(double v)
= void writeBytes(String s)
= void writeChars(String s)
= void writeUTF(String str)

All these methods for reading and writing binary data are declared in
interfaces:

= Datalnput
= DataOutput

Serialization (cont.)

Serialization

Java's object serialization allows to take any object that implements
the java.io.Serializable interface and turn it into a sequence of bytes
that can later be fully restored to regenerate the original object.

The following classes are used to read and write objects:
= ObjectlnputStream
= ObjectOutputStream

It is possible to use these classes to read and write primitive data
types since they implement interfaces DataInput and DataOutput.

Note: Instance variables defined as transient and static variables are
prevented from serialization.

The interface java.io.Serializable does not declare any methods.

Serialization (cont.)

Writing into an object stream:

FileOutputStream fos = new FileOutputStream("t.tmp");
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeInt(12345);

oos.writeObject("Today");

oos.writeObject(new Date());

oos.close();

Reading from an object stream:

FileInputStream fis = new FileInputStream("t.tmp");
ObjectInputStream ois = new ObjectInputStream(fis);
int i = ois.readInt();

String today = (String) ois.readObject();

Date date = (Date) ois.readObject();

ois.close();

Classes that require special handling during the serialization and
deserialization process must implement two special methods with the
given signatures:

private void writeObject(ObjectOutputStream s)
throws IOException {
s.defaultWriteObject();
// customized serialization code

private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException {
s.defaultReadObject();
// customized deserialization code

J/ ...
// followed by code to update the object, if necessary



Serialization (cont.)

Random Access Files

For complete, explicit control of the serialization process, a class
must implement the java.io.Externalizable interface.

For Externalizable objects, only the identity of the object's class is
automatically saved by the stream. The class is responsible for writing
and reading its contents.

package java.io;
public interface Externalizable extends Serializable {
public void writeExternal (ObjectOutput out)

throws IOException;

public void readExternal(ObjectInput in)
throws IOException, java.lang.ClassNotFoundException;

Note: Default constructor of a deserialized object implementing
Externalizable is always invoked. Thus the constructor must be
public.

Random Access Files (cont.)

The input and output streams are sequential access streams.
Random access files permit nonsequential, or random, access to a
file's contents.

The RandomAccessFile class in the java.io package implements a
random access file.

Note: The RandomAccessFile class is not part of class hierarchy of
streams, but it implements Datalnput and DataOutput interfaces.

It is possible to open a random access file only for reading:

new RandomAccessFile("file.txt", "r");

And also for reading and writing:

new RandomAccessFile("file.txt", "rw");

After the file has been opened, the common methods read() and
write() can be used for reading and writing.

Random Access Files (cont.)

The class RandomAccessFiTe supports the notion of a file pointer
that indicates the current location in the file.

= When the file is opened, the file pointer is set to 0 (to the
beginning of the file).

= Calls to the read() and write() methods adjust the file pointer
by the number of bytes read or written.

The RandomAccessFile class contains three methods for explicitly
manipulating the file pointer:

= int skipBytes(int n) - moves the file pointer forward the specified
number of bytes

= void seek(long pos) - positions the file pointer just before the
specified byte

= long getFilePointer() - returns the current byte location of the file
pointer

The RandomAccessFiTe class contains also methods for manipulatio
with the length of the file:

= long length() - returns the length of the file
= void setLength(long newLength) - sets the length of the file



Data Structures Data Structures (cont.)

The basic data structures are:
= array Hashtable: Tree:
= list
= hashtable
= tree

Array: indexed access, can be resizable

01 2 3 45 6 7 8 9 1011 12 13

List: singly or doubly linked, can be circular

T 3T 1311

Abstract Data Types Collections in Java

Data structures support different operations: A collection (sometimes called container) is an objects that groups
. insert an element multiple elements into single unit.

= remove an element

Earlier versions of Java included the following collections:
= search an element

= java.util.Vector

= java.util.Hashtable

Abstract data types are interfaces specifying what operations are = array
provided. Examples of ADTs:
= Set Current versions of Java contain collection framework - a unified
architecture for representing and manipulating collections. It consist:

= Dictionary - also called Map of:

= Vector - resizable array
= Stack - also called LIFO

= Queue - also called FIFO = Algorithms - methods that perform useful computations
= Priority Queue (searching and sorting)

= Interfaces - abstract data types representing collections
= Implementations - concrete implementations of the interfaces




Interfaces

Implementations

The collection interfaces in the package java.util form a hierarchy:

Collection

A

Set

List

8

SortedSet

Map

SortedMap

Implementations (cont.)

The classes implementing collections in the package java.util:

AbstractCollection

A

AbstractSet AbstractList
I I |
HashSet TreeSet ArrayList AbstractSequentialList Vector
LikedHashSet LinkedList Stack

The Collection Interface

The classes implementing maps:

AbstractMap obsolete — Dictionary
HashMap TreeMap WeakHashMap| |ldentityHashMap Hashtable
LinkedHashMap

The Collection is the root of the collection hierarchy.

A Collection represents a group of objects - its elements. (Some
implementations allow duplicate elements and others do not.)

The primary use of the Collection interface is pass around collection:
of objects where maximum generality is desired.

The Collection interface declares the following basic operations:
= int size()
= boolean isEmpty()
= boolean contains(Object o)
= boolean add(Object o)
= boolean remove(Object o)

- optional
- optional
= |terator iterator()

Note: Some operation are designated as optional. Implementations that
do not implement them throw an UnsupportedOperationException.



Iterators

An iterator provides a way to access the elements of an aggregate

object sequentially without exposing its underlying representation.

The java.util.lterator provides uniform interface for traversing
different aggregate structures.

public interface Iterator {
boolean hasNext();
Object next();
void remove(); // optional

Example of use:

Collection ¢ = new ArrayList();
.. // fill the collection
for (Iterator i = c.iterator(); i.hasNext(Q); ) {
Object o = i.next();
// process the element

Iterators (cont.)

Enumerations

The Iterator interface contains the optional method remove() that
removes from the underlying collection the last element that was
returned by next():

= The remove() method may be called only once per call to
next() - an exception is thrown if this condition is violated.

= The remove() method is the only safe way to modify a
collection during iteration.

= The behavior is unspecified if the underlying collection is
modified in any other way while iteration is in progress.

Earlier implementations of Java used the java.util.Enumeration
interface instead of iterator:

public interface Enumeration {
boolean hasMoreElements();
Object nextElement();

The differences between them are:

= Iterator allows the caller to remove elements from the
underlying collection.

= Method names have been improved in Iterator.

New implementations should use Iterator in preference to
Enumeration.

Bulk Operations

The bulk operations perform some operation on an entire Collectiol

in a single shot:
= boolean containsAll(Collection c)

= boolean addAll(Collection ¢) - optional

= boolean removeAll(Collection c) - optional
= boolean retainAll(Collection c) - optional
= void clear() - optional

For example. to remove all instances of a specified element e from a

collection c we can use:

c.removeAll(Collections.singleton(e));

Note: The class Collections contains many useful static methods that
operate on collections. The singleton() method returns an immutable
collection (set) containing only the specified object.



Array Operations

The toArray() allow the contents of a Collection to be translated
into an array:

= Object[] toArray()
= Object[] toArray(Object[] a)

The following code dumps the contents of c into a newly allocated
array:

Object[] a = c.toArray(Q);

Suppose c is a collection known to contain only strings. The following
code can be used to dump the contents of c into a newly allocated
array of String:

String[] a = (String[])c.toArray(new String[0]);

Note: If the collection fits in the specified array, this array is used,
otherwise a new array is allocated.

The Set Interface (cont.)

The Set Interface

Example of use of a Set that prints out any duplicate words, the
number of distinct words, and a list of the words with duplicates
eliminated:

import java.util.*;

public class FindDuplicates {
public static void main(String[] args) {
Set s = new HashSet();
for (int i = 0; i < args.length; i++) {
if (!s.addCargs[i])) {
System.out.println("Duplicate detected:
+ args[il);

}
}
System.out.println(s.size() +
" distinct words detected: " + s);

A Set is a Collection that cannot contain duplicate elements. It
models a mathematical set abstraction.

The Set interface contains no methods than those inherited from
Collection.

There are two general-purpose Set implementations:

= HashSet - stores its elements in a hashtable, it is the
best-performing implementation.

= TreeSet - stores its elements in a red-black tree, guarantees th
order of iteration (the elements will be sorted).

The following code creates a new collection containing the same
elements as the collection c, but with all duplicates eliminated:

Collection d = new HashSet(c);

The Set Interface (cont.)

The bulk operations on sets correspond to standard set-algebraic
operations:

= sl.containsA11(s2) - returns true if s2 is a subset of s1
S92 C 81

= s1.addA11(s2) - transforms s1 into the union of s1 and s2
81 U 89

= sl.retainAl1(s2) - transforms sl into the intersection of sl
and s2

31082

= sl.removeAll1(s2) - transforms sl into the set difference of
sl and s2

81 — S2



The List Interface

The List Interface (cont.)

A List is an ordered Collection (sometimes called a sequence). Lists
may contain duplicate elements.

There are two general-purpose List implementations:

= ArrayList - generally the best-performing implementation

= LinkedList - offers better performance under certain
circumstances

The List contains methods for positional access that manipulate
elements based on their numerical position in the list:

= Object get(int index)

= Object set(int index, Object element) - optional
= void add(int index, Object element) - optional

= Object remove(int index) - optional

= boolean addAll(int index, Collection c) - optional

The List Interface (cont.)

= The remove() operation always removes the first occurrence of
the specified element.

= The add() and addA11() operations always append the new
element(s) to the end of the list.

= To concatenate one list to another we can use:

Tistl.addA1T1(1ist2);

= The non-destructive version of concatenation:

List Tist3 = new ArrayList(listl);
Tist3.addA11(Tist2);
= The List interface contains two methods for searching:

= int indexOf(Object o)
= int lastindexOf(Object o)

For example, the following method swaps two elements of a list:

private static void swap(List a, int i, int j) {
Object tmp = a.get(i);
a.set(i, a.get(3j));
a.set(j, tmp);

The following method randomly permutes the specified List using the
specified source of randomness:

public static void shuffle(List a, Random rnd) {
for (int i = a.size(Q); i > 1; i--) {

swap(a, i-1, rnd.nextInt(i));
3

Note: The class Collections contains such method shuffle().

The ListIterator Interface

The List interface supports its own extended version of iterator:

public interface ListIterator extends Iterator {
boolean hasNext();
Object next();

boolean hasPrevious();
Object previous(Q);

int nextIndex();
int previousIndex();

void remove(Q); // optional
void set(Object 0); // optional
void add(Object 0); // optional



The ListIterator Interface (cont.)

To obtain ListIterator we can use List methods:

= Listlterator listlterator()
= Listlterator listlterator(int index)

A list iterators has a cursor pointing between elements:

Index of cursor: 0 1 2 3 4 5 6 7 8 9 10 11

The List Interface (cont.)

The ListIterator Interface (cont.

The List interface contains a method returning a range-view:

= List subList(int fromIndex, int tolndex)

The returned List contains the portion of the original list whose
indexes range from fromIndex, inclusive, to toIndex, exclusive.

Changes in the former List are reflected in the latter.

For example, to remove a range of elements from a list we can use:

Tist.subList(fromIndex, toIndex).clear();

Searching for an element in a range:

int i
int j

Tist.subList(fromIndex, toIndex).indexOf(o);
Tist.subList(fromIndex, toIndex).lastIndexOf(o);

Iterating backwards in a list:

for (ListIterator i = list.listIterator(list.size());
i.hasPrevious(Q); ) {
Object o = i.previous();

A method that replaces all occurrences of one specified value with
another:

public static void replace(List 1, Object x, Object y) {
for (ListIterator i = T1.listIterator(); i.hasNext(); ) {
if (X == null ? i.next() == null
: x.equals(i.next())) {
i.set(y);

The Collections Class

The Collections class contains static methods implementing differen

algorithms working on collections. Most of them apply specifically to
List:

void sort(List list)

= int binarySearch(List list, Object key)
= void reverse(List list)

= void shuffle(List list)

= void fill(List list, Object obj)

= void copy(List dest, List src)

There is a similar class called Arrays containing as static methods
algorithms working on arrays.



The Map Interface

A Map is an object that maps keys to values.

A map cannot contain duplicate keys: Each key can map to at most
one value.

The most important methods:

= Object put(Object key, Object value) - optional
= Object get(Object key)
= Object remove(Object key) - optional

= boolean containsKey(Object key)

= boolean containsValue(Object value)
= int size()

= boolean isEmpty()

The Map Interface (cont.)

The Map Interface (cont.)

There are two general-purpose Map implementations:

= HashMap - stores its entries in a hash table, it is the
best-performing implementation

= TreeMap - stores its entries in a red-black tree, guarantees the
order of iteration

There is also an older class Hashtable.
Hashtable has been retrofitted to implement Map.

Other methods:
= void putAll(Map t) - optional

void clear() - optional
Set keySet()

Collection values()

Set entrySet()

The Collection-view methods provide the only means to iterate over
a Map:

for (Iterator i = m.keySet().iterator(); i.hasNext(); ) {
System.out.println(i.next());
}

Object Ordering

Objects that implement the java.lang.Comparable interface can be
ordered automatically. The Comparable interface provides natural
ordering for a class:

public interface Comparable {
public int compareTo(Object 0);
3

The method ol.compareTo(o2) returns:
= a negative integer - if ol is less than 02
= zero - if 0l is equal to 02
= a positive integer - if ol is greater than 02

Many standard classes such as String and Date implement the
Comparable interface.



Object Ordering (cont.) Object Ordering (cont.)

import java.util.¥;

public class Name +implements Comparable { public int compareTo(Object o) {
private String firstName, TastName; Name n = (Name)o;
int cmp = TastName.compareTo(n.TlastName);
if (cmp !'= 0) return cmp;
return firstName.compareTo(n.firstName);
public boolean equals(Object o) { 3
if (! (o instanceof Name)) return false; 1

Name n = (Name)o;
return firstName.equals(n.firstName) &&
TastName.equals(n.lastName); Note how methods equals() and hashCode() are redefined to be
3 consistent with compareTo().

public int hashCode() {
return 31 * firstName.hashCode() +
TastName.hashCode();

}
Comparators The SortedSet Interface
If we want to sort objects in some other order than natural ordering, A SortedSet is a Set that maintains its elements in ascending order,
we can use the Comparator interface: sorted according to the elements' natural order, or according to a

Comparator provided at SortedSet creation time.
public interface Comparator {

int compare(Object ol, Object 02); The SortedSet adds the following methods to the methods declared i
3 the Set interface:

= SortedSet subSet(Object fromElement, Object toElement)
SortedSet headSet(Object toElement)

SortedSet tailSet(Object fromElement)

Object first()

Object last()

Comparator comparator()

A Comparator is an object that encapsulates ordering.

The compare() method compares two its arguments, returning a
negative integer, zero, or a positive integer as the first argument is
less than, equal to, or greater than the second.

Methods implementing different algorithms in classes Collections
and Arrays allow to specify the comparator that should be used in
these algorithms.




The SortedSet Interface (cont.)

There are some differences on behavior of methods inherited from the
Set interface:

= The iterator returned by the iterator() traverses the sorted set
in order.

= The array returned by toArray() contains the sorted set's
elements in order.

The SortedSet interface is implemented by the class:
= TreeSet

Implementations

The SortedMap Interface

The general-purpose implementations are summarized in the table
below:

Implementations
Hash Table Resizable Array Balanced Tree Linked List

Set HashSet TreeSet
List ArrayList LinkedList
Map HashMap TreeMap

The SortedSet and SortedMap interfaces are implemented by TreeSet
and TreeMap classes.

A SortedMap is a Map that maintains its entries in ascending order,
sorted according to the keys' natural order, or according to a
Comparator provided at SortedMap creation time.

The SortedMap adds the following methods to the methods declared
in the Map interface:

= Comparator comparator()

SortedMap subMap(Object fromKey, Object toKey)
SortedMap headMap(Object toKey)

SortedMap tailMap(Object fromKey)

Object firstKey()

= Object lastKey()

There is one class implementing the SortedMap interface:
= TreeMap

The BitSet Class

The java.util.BitSet class implements a vector of bits that grows as
needed.

Each component of the bit set has a boolean value. The bits of a BitSe
are indexed by nonnegative integers. Individual indexed bits can be
examined, set, or cleared.

One BitSet may be used to modify the contents of another BitSet
through logical AND, logical inclusive OR, and logical exclusive OR
operations.

The BitSet class can used as an efficient implementation of a set if th
corresponding universe of possible values is finite and small.

The logical operations then correspond to the set operations.

Note: The BitSet class is not part of the collection framework.



Nested Classes

It is possible to define a class as a member of another class. Such a
class is called nested class:

class EnclosingClass {

class NestedClass {

}
}

A nested class has special privilege: It has unlimited access to its
enclosing class's members, even if they are declared private.

A class should be defined within another class when the nested class
makes sense only in the context of its enclosing class or when it relies
on the enclosing class for its function.

Nested Classes (cont.)

Nested Classes (cont.)

A static nested class cannot refer directly to instance variables or
methods defined in its enclosing class.

An inner class is associated with an instance of its enclosing class
and has direct access to that object's instance variables and methods.
It cannot define any (non-final) static members itself.

Like other classes, nested classes can be declared abstract or final.

Also, the access specifiers - private, protected and public - may be
used to restrict access to nested classes.

A nested class can be also declared in any block of code.

A nested class declared within a method or other smaller block of
code has access to any final local variables in scope.

Like other members, a nested class can be declared static.
A static nested class is called just static nested class.
A non-static nested class is called an inner class.

class EnclosingClass {

static class StaticNestedClass {

}

class InnerClass {

}

Inner Classes - Example

public class Containerl {
private Object[] items;

public Iterator iterator() {
return new ContainerIterator();
}

class ContainerIterator +implements Iterator {
int index = 0;
public boolean hasNext() {
return index < items.length;

}
public Object next() {
if (lhasNext())
throw new NoSuchETementException();
return items[index++];



Anonymous Inner Classes

Anonymous Inner Classes (cont.)

An inner class can be declared without naming it. However,
anonymous classes can make code difficult to read.

public class Container2 {
private Object[] items;

public Iterator iterator() {
return new Iterator() {
int index = 0;
public boolean hasNext() {
return index < items.length;
}

public Object next() {
if ('hasNext())
throw new NoSuchElementException();
return items[index++];

Locales

An anonymous class is never abstract.
An anonymous class is always an inner class, it is never static.
An anonymous class is always implicitly final.

An anonymous class cannot have an explicitly declared constructor.
Instead, the compiler provides an anonymous constructor.

Locales (cont.)

A java.util.Locale object represents a specific geographical, political,
or cultural region.

An operation that requires a Locale to perform its task is called
locale-sensitive and uses to Locale to tailor information for the user.

For example, displaying a number is a locale-sensitive operation - the
number should be formatted according to the customs/conventions
of the user's native country, region, or culture.

Constructors:
= Locale(String language)
= Locale(String language, String country)
= Locale(String language, String country, String variant)

Some methods:
= static Locale getDefault()
= static Locale[] getAvailableLocales()

Examples:
= new Locale("cs", "CZ") - Czech, Czech Republic
= new Locale("en", "US™) - English, United States
= new Locale("en", "GB™) - English, United Kingdom
= new Locale("fr", "FR") - French, France
= new Locale("de", "DE") - German, Germany

Remark: Locales are often written as "cs_CZ", "en_US", "en_GB", ..



Formatting Numbers

Formatting Numbers (cont.)

By invoking the methods provided by the java.text.NumberFormat we
can format numbers, currencies, and percentages according to Locale.

Example:

NumberFormat f = NumberFormat.getNumberInstance(locale);
String s = f.format(345678.234);
System.out.printin(s + " " + locale.toString(Q));

We obtain:

345 678,234 cs_(CZ
345,678.234  en_US
345.678,234  de_DE

Similarly we can use methods getCurrencyInstance() and
getPercentInstance() to format currencies and percentages.

GUI

We can use the java.util.DecimalFormat class (it is a subclass of
NumberFormat) to format decimal numbers.

The class allows to control display of leading and trailing zeros,
prefixes and suffixes, grouping (thousands) separators, and the
decimal separator. The format specified using pattern:

String pattern = ...
DecimalFormat f = new DecimalFormat(pattern);
String s = f.format(12345.6789);

System.out.println(pattern + " " + s);

We obtain (using "cs_CZ" locale):

I ## . #H## 12 345,679
I 12345,68
000000.000 012345,679

It is possible to use the DecimalFormatSymbols class to change the
symbols that appear in the formatted numbers produced by the
format() method.

Simple GUI Application

Java supports GUI development through the AWT and the JFC Swing
packages.

= Abstract Window Toolkit (AWT)
The AWT provides connection Java application and native GUI.
The AWT components depend on native code counterparts
(called peers) to handle their functionality.

JVM Native System
Peer
s AWT (=7 Objects ’ Nati
Java Wi gnvg
Program indowing
Event < System
Handler
= JFC Swing

Swing implements a set of GUlI components that build on AWT
technology and provide a pluggable look and feel. Swing is
implemented entirely in the Java and do not depend on peers to
handle their functionality.

[] GuI Application == &

Hell ), WA wld...

JFrame

| — JPane

2=

\
\
JLabe




Simple GUI Application (cont.)

Simple GUI Application (cont.)

At first, we create a label:

JLabel text = new JLabel("Hello, world...");
text.setForeground(Color.RED);

Font font = new Font("serif", Font.BOLD|Font.ITALIC, 24);
text.setFont(font);

Then we create a panel and add the label to the panel:

JPanel panel = new JPanel();

panel.setBackground (Color.WHITE);

panel.setBorder (BorderFactory.createEmptyBorder (10, 30,
10, 30));

panel.add(text);

Note: The classes Color and Font belong to the java.awt package, the
classes JLabel and JPanel to the javax.swing package.

Layout Management

Finally, we create and show a main frame:

JFrame.setDefaultLookAndFeelDecorated (true);

JFrame frame = new JFrame("GUI Application');
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane() .add(panel);

frame.pack(Q);

frame.setVisible(true);

We put all the previous code in a (static) method createGUI() and
call it from the main() method:

public static void main(String[] args) {
javax.swing.SwingUtilities.invokeLater(new Runnable() {
public void run() {
createGUIQ;
}
s

Layout Management (cont.)

Layout management is a process of determining size and position of
components. By default, each container has a layout manager - an
object that performs layout management for the components within
the container. Java provides several standard layout managers.

= BorderLayout
The BorderlLayout has five cells called PAGE_START, PAGE_END,
LINE_START, LINE_END and CENTER

PAGE_START

CENTER

LINE_START
LINE_LEND

PAGE_END

= FlowLayout
The simple layout manager “flows” components into the window
The components can be aligned and space between them can be
specified.

= GridLayout
The GridLayout manager's strategy is to make each cell exactl
the same size so that rows and columns line up in a regular gric




Events and Event Listeners

Evens are instances of subclasses of the java.util.EventObject class.
They represent informations about particular events that occurred.

Event Listeners are objects implementing subinterfaces of the
java.util.EventListener interface.

Most of events and event listener interfaces concerning GUI it defined
in the java.awt.util package.

event listener

event source J— 2 et oblect
{event listener

event object

il

event source event listener

Note: Multiple listeners can register to notified of events of a particular
type from a particular source. Also the same listener can listen to
notifications from different objects.

Example - Counter (cont.)

Example - Counter

public void createGUI() {
text = new JLabel("Count: ");
text.setHorizontalATlignment (SwingConstants.RIGHT);
value = new JLabel("0");
increase = new JButton("Increase");
decrease = new JButton("Decrease");
increase.addActionListener (this);
decrease.addActionListener (this);
updatelLabel();

JPanel panel = new JPanel();

panel.setBorder (BorderFactory.createEmptyBorder (10, 30,
10, 30));

panel.setlLayout(new GridLayout(2, 2, 10, 5));

panel.add(text);

panel.add(value);

panel.add(increase);

panel.add(decrease);

[] Counter

Count: 14

Increase Decrease

import java.awt.*;
import java.awt.event.*;
import javax.swing.¥*;

public class Counter +implements ActionListener {
private int count = 0;
private JLabel text, value;
private JButton increase, decrease;

Example - Counter (cont.)

JFrame.setDefaultLookAndFeelDecorated (true);

JFrame frame = new JFrame("Counter™);
frame.getContentPane () .add(panel);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack(Q);

frame.setVisible(true);

}

private void updatelLabel () {
value.setText(Integer.toString(count));
decrease.setEnabled(count > 0);

}

public void actionPerformed(ActionEvent e) {
Object source = e.getSource();

if (source == increase) {
count++; updatelLabel();
} else if (source == decrease) {

if (count > 0) { count--; updateLabel(); }
}



Example - Counter (cont.)

[7] Counter

Count: O

Increase

Components

Example - Counter (cont.)

Overview of the most important components from the javax.swing
package:

A |2 "il -
|X$J :Qi-w!@ Bird
¥/ Check 1 o
& Radio 2 m : k Frames F"£r| Second
oo
[R50 7] Pig 0 10 20 30
JButton, JCheckBox, JComboBox JSlider
JRadioButton
 Atestonly menu item . |
&2 Both text and icon
January st * A radio button meny item
| February e —_— |
| march = A check box menu item |
[ April - IE Years: (30 A submenu >
JList JSpinner JTextField JMenu, JMenultem

JMenuBar

The other possible way how to add action listeners to buttons:

increase.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
count++; updatelLabel();
}

b

decrease.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
if (count > 0) { count--; updatelLabel(); }
}

b;

Components (cont.)

[ LabeiDemo * &'

ey [7] mternalFramedemo [
Document
Image and Text = .
] pocument #1 =~ F & I
| Text-Only Label
B e [ Document 22~ o &
JLabel JProgressBar JInternalFrame
1 Music

FirstName | Lasth @ [ Classical
eft Dinkins © [ Beethaven

Dinkins & [ Brahms
|y Fowrler @ [ Mozart
|Hania Gajewska e[ Jaz
Daavid Geary & [ Rock

JTable JTree



Components (cont.)

Containers

[7] TexaSamplerDemo
Text Fields

JPasswordField: *****~

Plain Text

This is an editable

(sarme font.

JTextField: hello

JFormattedTexaField: [10.5.2004

Type text and then Enter in a field.

TextArea. A text area isa
"plain" text component,
(which means that although
it can display text in any

[font, all of the text is in the

Styled Text

2 i Thus 15 an unaditable

with HTML text from 3 URL

vl

PR EFEIE R LN, FRYE §

JEditorPane, which was nitialized

[\{; b=
f LRl
Tt

that uses a stdedEditarkit and

S mACin e e mnt sanl s il s s

[TextPane is a subclass of |EditorPane [

JTextField, JFormattedTextField, JPasswordField
JTextArea, JEditorPane, JTextPane

Top-Level Containers

Top level containers:

[ frameDemo o~ &

JFrame

Predefined dialogs:

Look in: QC'T '_i Igﬂ 'ﬁ'

L=

'[Ij emacslib
I host-news
I java

:Ij mbin

)

5. \Would you like green eggs and ham?

[yes || no

| 1O

JDialog

Containers are components that can contain other components.

A Label on a Panel
Color and font test:

& et
® hlue
& green
» =zl

<> L3

JPanel JScrollPane JToolBar

JSplitPane JTabbedPane

Important Classes from java.awt

JFileChooser

Some important classes from the java.awt package:

= Dimension - width, height

= Rectangle - x, y, width, height

= Insets - left, right, top, bottom

= Point - x,y

= Color - e.g, Color.RED, ...

= Cursor - e.g., Cursor.WAIT_CURSOR
= Font, FontMetrics



The JComponent Class

The JComponent class is a common superclass of all Swing
components.

Overview of methods:
= void setForeground(Color fg), Color getForeground()
= void setBackground(Color bg), Color getBackground()
= void setFont(Font font), Font getFont()

= void setCursor(Cursor cursor), Cursor getCursor(),
boolean isCursorSet()

= void setName(String name), String getName()
= void setToolTipText(String text), String getToolTipText()
= void setEnabled(boolean enabled), boolean isEnabled()

= void setVisible(boolean aFlag), boolean isVisible(),
boolean isShowing()

The JComponent Class (cont.)

The JComponent Class (cont.)

= int getWidth(), int getHeight()
= Dimension getSize(), Dimension getSize(Dimension rv)

= int getX(), int getY(), Point getLocation(),
Point getLocation(Point rv), Point getLocationOnScreen()

= Rectangle getBounds(), Rectangle getBounds(Rectangle rv)

= Insets getinsets(), Insets getinsets(Insets insets)

= void setLocation(int x, int y), void setLocation(Point p)

= void setSize(int width, int height), void setSize(Dimension d)

= void setBounds(int x, inty, int width, int height),
void setBounds(Rectangle r)

= void setBorder(Border border), Border getBorder()

= void repaint(), void repaint(int x, inty, int width, int height), voi
repaint(Rectangle r)

= void revalidate()

= void paintComponent(Graphics g)

= void setPreferredSize(Dimension preferredSize),
Dimension getPreferredSize()

= void setMaximumSize(Dimension maximumSize),
Dimension getMaximumSize()

= void setMinimumSize(Dimension minimumSize),
Dimension getMinimumSize()

= boolean isMinimumSizeSet(), boolean isPreferredSizeSet(),
boolean isMaximumSizeSet()

The JComponent Class (cont.)

Dealing with component hierarchy:

= Component add(Component comp), Component add(Componen
comp, int index), void add(Component comp, Object
constraints), void add(Component comp, Object constraints, int
index)

= void remove(int index), void remove(Component comp), void
removeAll()

= Component getComponent(int n), Component[]
getComponents(), int getComponentCount()

= Container getParent(), Container getTopLevelAncestor()



Events and Event Listeners

Events can be divided into two groups:

= low-level events - low-level input, window-system occurrences,
e.g., KeyEvent, MouseEvent, MouseWheelEvent, PaintEvent,
WindowEvent

= semantic events - everything else,
e.g., ActionEvent, FocusEvent, ItemEvent, TextEvent

Overview of the most important listeners:

= KeyListener, MouseListener, MouseMotionListener,
MouseWheelListener

WindowListener, WindowFocusListener, WindowStateListener

= ActionListener, ChangeListener, ItemListener

ComponentListener
MenulListener, MenuKeyListener, PopupMenulListener

Graphics Programming

Adapter Classes

Each component has its own integer coordinate system, ranging from
(0,0) to (width-1, height-1), with each unit representing the size of
one pixel. The upper left corner of a component's painting area is
(0,0). The x coordinate increases to the right, and the y coordinate
increases downward.

0, 0)

N

\
x

\/ \

y (width - 1, height - 1)

Note: A pixel is a “picture element”. It is a dot on a computer screen.

The adapter class implements its corresponding listener class by
providing all of the required methods, but which have bodies that do
nothing.

public abstract class MouseMotionAdapter
implements MouseMotionListener {

public void mouseDragged(MouseEvent e) {

}

public void mouseMoved (MouseEvent e) {
}
}
The adapter classes serve as base classes for event handlers.
addMouseMotionlListener (new MouseMotionAdapter() {
public void mouseMoved (MouseEvent e) {

}
s

Painting

Painting mechanism schedules painting of visible components. It
takes care of details such as damage detection, clip calculation and
z-ordering. There are two kinds of painting operations.

= System-triggered
The system requests a component to render its contents, usuall
for one of the following reasons:

= the component is first made visible on the screen,
= the component is resized,
= the component has damaged that needs to be repaired.

= Application-triggered
A component decides it needs to update its contents because it:
internal state has changed. An application invokes repaint()
method on a component, which registers an asynchronous
request that this component needs to be repainted. The
component is then repainted by invocation of
paintComponent() method.
Note: If multiple calls to repaint() occur on a component before the

initial repaint request is processed, the multiple requests may be
collapsed into a single call to paintComponent().



The Graphics Object Painting Example

The Graphics object provides both a context for painting and
methods for performing the painting, for example drawLine(),
drawRect (), filTRect(), drawPolygon(), drawString(), etc. It
encapsulates information needed for the basic rendering operations.

The information includes the following properties.
= a component on which to draw, \\\\/
= a translation origin for rendering and clipping coordinates,

= current clip,
= current color,

= current font, Eesults

(] Paint example

Note: The Graphics objects take up operating system resources (more
than just memory) and a window system may have a limited number of

them.
Painting Example (cont.) Look and Feel
public class Graph extends JComponent { ¢ swingApplicat... [T (B [ swingapplication o~ @' [

private int[] values = {
60, 40, 20, 30, 40, 20, 60, 80, 70, 72, 42

b | [easwgnte |
Mumber of button clicks: 7 Humber of button clicks: 0
public Dimension getPreferredSize() {
return new Dimension(260, 110); Windows look and feel Java look and feel
}
B Te oot AN ¢ sgtpicaion IR
int step = 20, ; Swin QA p plication
int x = 10;
’ '™ a Swing bution!
for (int i = 0; i < values.length-1; i++) { l ol lon |, I'm & Swing button!
X += st(.ap; . ) Number of bufton clicks: 0 Mumber of button clicks: 5
g.drawLine(x, values[i], x+step, values[i+1]);
¥ Motif look and feel GTK+ look and feel

g.setFont(new Font("sans", Font.BOLD, 12));
g.setColor(Color.BLACK);
g.drawString("Results", 100, 100);




Look And Feel (cont.)

Look And Feel (cont.)

Setting the look and feel:

UIManager.setLookAndFeel (
UIManager.getCrossPlatformLookAndFeelClassName());

Possible values of look and feel argument:
= UIManager.getCrossPlatformLookAndFeelClassName()
= UIManager.getSystemLookAndFeelClassName()
= "javax.swing.plaf.metal.MetalLookAndFeel"
= "com.sun.java.swing.plaf.windows.WindowsLookAndFeel"
= "com.sun.java.swing.plaf.motif.MotifLookAndFeel"
= "com.sun.java.swing.plaf.gtk.GTKLookAndFeel"

Using Menus

It is also possible to specify the look and feel at the command line:
$ java -Dswing.defaultlaf=... MyApp

Another possibility is to modify the configuration file
swing.properties in the jre/1ib directory

# Swing properties

swing.defaultlaf=...

Using Menus (cont.)

The following example illustrates the use of menus:

Qﬁnuntnn & &
File
: Q.;n

%

private JMenuBar createMenuBar() {
JMenuBar menuBar = new JMenuBar();

JMenu menu = new JMenu("File");
menu.setMnemonic(KeyEvent.VK_F);
menuBar.add(menu) ;

JMenuItem miOpen = new JMenultem("Open", KeyEvent.VK_0);
miOpen.setAccelerator (KeyStroke.getKeyStroke (
KeyEvent.VK_0, ActionEvent.CTRL_MASK));
miOpen.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
output.append("Action: Open\n");
}

s

menu.add (miOpen);

menu.addSeparator();



Using Menus (cont.)

JMenuItem miExit = new JMenuItem("Exit", KeyEvent.VK_X);
miExit.setAccelerator (KeyStroke.getKeyStroke (
KeyEvent.VK_X, ActionEvent.CTRL_MASK));
miExit.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.exit(0);
}

s

menu.add(miExit);

return menuBar;

Handling Key Events

Using Menus (cont.)

There are three methods declared in the KeyListener interface:
= void keyTyped(KeyEvent e)
= void keyPressed(KeyEvent e)
= void keyReleased(KeyEvent e)

A KeyEvent object contains the following information:

= the key code (constants such as VK_A, VK_LEFT, VK_PAGE_DOWN,
VK_FS5, ...)

the character associated with the key
the modifiers - Shift, CTRL, Meta (Alt)
key location - left, right, standard, numpad

« if it is an action key

private Container createContentPane() {
JPanel contentPane = new JPanel(new BorderLayout());
contentPane.setOpaque (true);
output = new JTextArea(5, 30);
output.setEditable(false);
JScrol1Pane scrollPane = new JScrollPane(output);
contentPane.add(scrol1Pane, BorderLayout.CENTER);
return contentPane;

JFrame frame = new JFrame("MenuDemo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

MenuDemo demo = new MenuDemo();
frame.setJMenuBar (demo.createMenuBar());
frame.setContentPane (demo.createContentPane());

frame.setSize (450, 260);
frame.setVisible(true);

Icons

An icon is a fixed-sized picture. An icon is an object that implement:
the Icon interface.

The Imagelcon class is an implementation of the Icon interface that
paints icon from a GIF, JPEG, or PNG image.

protected static Icon createImageIcon(String path) {
java.net.URL imgURL = IconDemo.class.getResource(path);
if (imgURL != null) {
return new ImageIcon(imgURL);
} else {
System.err.println("Couldn't find file: " + path);
return null;

Icon icon = createImageIcon("images/my_image.png");
JLabel label = new JLabel(icon);



Simple Dialogs

To create and show simple dialogs, we can use the JOptionPane class:

JOptionPane.showMessageDialog(frame,
"The database was deleted.");

Message

'ﬁﬁg The database was deleted.

Simple Dialogs (cont.)

Simple Dialogs (cont.)

Object[] options = { "Yes", "No", "Cancel" };
int n = JOptionPane.showOptionDialog(frame,
"Do you want to delete all records?",
"Database Question",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, options, options[2]);

% Do you want to delete all records?

JOptionPane.showMessageDialog(frame, "The database is empty.
"Database warning", JOptionPane.WARNING_MESSAGE);

Database warning

'g The database is empty.

JOptionPane.showMessageDialog(frame, "The database is empty.
"Database error", JOptionPane.ERROR_MESSAGE);

Cratabase error

The database is empty.

Timers

A Swing timer (instance of the javax.swing.Timer) fires one or more
action events after a specified delay.

Swing timer can be used in two ways:
= to perform a task once, after a delay
= to perform a task repeatedly

Timer timer = new Timer (1000, new ActionListener() {
public void actionPerformed(ActionEvent e) {

}
b

timer.start(Q);



	Source code creation
	Compilation
	Running
	
	Info for Students
	References
	Java - Overview
	Creating Java Program (Step 1)
	Creating Java Program (Step 2)
	Creating Java Program (Step 3)
	Java Environment
	Bytecode
	The Java Platform
	Java Virtual Machine
	Syntax and Semantics
	Overview of the Syntax of Java
	Lexical Elements
	Literals
	Keywords
	Comments
	Types, Values and Variables
	Integral Types and Values
	Floating-Point Types and Values
	The Boolean Type and Values
	The Arithmetic Operators
	Unary Operators
	Examples of use of 	exttt {++} and 	exttt {--}
	Relational Operators
	Conditional Operators
	Bitwise Operators
	Shift Operators
	Ternary Operator (?:)
	Assignment Operators
	Assignment Operators (cont.)
	Compound Assignment Operators
	Cast Expression
	Priority of Operators
	Associativity of Operators
	Statements
	Blocks
	Branching Statement
	Iteration Statements
	Driving Iteration Statements
	Driving Iteration Statements
	The lstinline {switch} Statement
	Array
	Array (cont.)
	Array (cont.)
	Multidimentional Array
	Manipulating Arrays
	Method Definition
	Method Definition (cont.)
	Method Invocation
	Object-Oriented Modeling
	Messages
	Examples of Objects
	Class
	Instances
	Java Class
	Java Objects
	References
	How To Destroy Objects?
	The lstinline {this} Keyword
	Overloading of Methods
	Encapsulation
	Encapsulation (cont.)
	Initialization of an Object
	Constructors
	Constructors (cont.)
	Constructors (cont.)
	Static Members
	Static Members (cont.)
	Static Members (cont.)
	Static Members (cont.)
	Static Initializers
	Static Initializers (cont.)
	Inheritance
	Inheritance (cont.)
	Inheritance (cont.)
	Hierarchy of Classes
	Use of Subclasses
	Use of Subclasses (cont.)
	Cast Operator
	The lstinline {instanceof} Operator
	The lstinline {final} Classes
	Polymorphism
	Polymorphism (cont.)
	The lstinline {super} Keyword
	The lstinline {final} Methods
	Inheritance and Constructors
	Inheritance and Constructors (cont.)
	Abstract Classes
	Abstract Classes (cont.)
	Abstract Methods
	Abstract Methods (cont.)
	Interfaces
	Interfaces (cont.)
	Interfaces (cont.)
	Interfaces (cont.)
	Interfaces (cont.)
	Interfaces (cont.)
	The lstinline {final} Attributes
	The lstinline {final} Attributes (cont.)
	Packages
	Packages (cont.)
	Canonical Names
	Canonical Names (cont.)
	Public Classes and Interfaces
	Hierarchy of Packages
	Import Declarations
	Import Declarations (cont.)
	Import Declarations (cont.)
	Import Declarations (cont.)
	Import Declarations (cont.)
	Import Declarations (cont.)
	Source Files
	Source Files (cont.)
	Ant
	Package Names
	Package Names (cont.)
	Package Names (cont.)
	Access Control
	Classes Without Instances
	Modifiers
	Modifiers (cont.)
	Class lstinline {java.lang.Object}
	References
	References (cont.)
	Method lstinline {equals()}
	Method lstinline {equals()}
(cont.)
	Copying Objects
	Copying Objects (cont.)
	Garbage Collection
	Strings
	Class lstinline {String}
	Class lstinline {String} (cont.)
	Class lstinline {String} (cont.)
	Class lstinline {String} (cont.)
	Class lstinline {String} (cont.)
	Class lstinline {String} (cont.)
	Strings - Example
	Strings - Example
	Class lstinline {StringBuffer}
	Class lstinline {StringBuffer} (cont.)
	Class lstinline {StringBuffer} (cont.)
	Class lstinline {StringBuffer} (cont.)
	Operator lstinline {+}
	Operator lstinline {+} (cont.)
	StringBuffer - Example
	Primitive Type Wrappers
	Primitive Type Wrappers (cont.)
	Class lstinline {Character}
	ASCII Table
	Manipulation With Characters
	Class lstinline {Character} (cont.)
	Class lstinline {Integer}
	Class lstinline {Number}
	Classes lstinline {Float} and lstinline {Double}
	Class lstinline {Math}
	Class lstinline {Math} (cont.)
	Class lstinline {Math} (cont.)
	Class lstinline {Math} (cont.)
	Method lstinline {main()}
	Program Exit
	Exceptions
	Exceptions - Example
	Exceptions - Motivation
	Exceptions - Motivation (cont.)
	Exceptions - Motivation (cont.)
	Exceptions - Motivation (cont.)
	Exception Objects
	Catching Exceptions
	The lstinline {try} Block
	The lstinline {catch} Block(s)
	The lstinline {catch} Block(s)
(cont.)
	The lstinline {catch} Block(s)
(cont.)
	The lstinline {finally} Block
	Exceptions and Methods
	Exceptions and Methods (cont.)
	Hierarchy of Exceptions
	Hierarchy of Exceptions (cont.)
	Hierarchy of Exceptions (cont.)
	Throwing an Exception
	Class lstinline {Throwable}
	Class lstinline {Error}
	Class lstinline {RuntimeException}
	Exception Advantages
	Streams
	Streams
	Streams
	Streams
	Streams
	File Streams
	File Streams
	File Streams
	Class lstinline {File}
	Class lstinline {File} (cont.)
	Class lstinline {File} (cont.)
	Filter Streams
	Buffered Streams
	Other Types of Streams
	Print Streams
	Print Streams (cont.)
	Standard Input and Output
	Stream Tokenizer
	Reading from URL
	Data Streams
	Data Streams (cont.)
	Serialization
	Serialization (cont.)
	Serialization (cont.)
	Serialization (cont.)
	Random Access Files
	Random Access Files (cont.)
	Random Access Files (cont.)
	Data Structures
	Data Structures (cont.)
	Abstract Data Types
	Collections in Java
	Interfaces
	Implementations
	Implementations (cont.)
	The lstinline {Collection} Interface
	Iterators
	Enumerations
	Iterators (cont.)
	Bulk Operations
	Array Operations
	The lstinline {Set} Interface
	The lstinline {Set} Interface (cont.)
	The lstinline {Set} Interface (cont.)
	The lstinline {List} Interface
	The lstinline {List} Interface (cont.)
	The lstinline {List} Interface (cont.)
	The lstinline {ListIterator} Interface
	The lstinline {ListIterator} Interface (cont.)
	The lstinline {ListIterator} Interface (cont.)
	The lstinline {List} Interface (cont.)
	The lstinline {Collections} Class
	The lstinline {Map} Interface
	The lstinline {Map} Interface (cont.)
	The lstinline {Map} Interface (cont.)
	Object Ordering
	Object Ordering (cont.)
	Object Ordering (cont.)
	Comparators
	The lstinline {SortedSet} Interface
	The lstinline {SortedSet} Interface (cont.)
	The lstinline {SortedMap} Interface
	Implementations
	The lstinline {BitSet} Class
	Nested Classes
	Nested Classes (cont.)
	Nested Classes (cont.)
	Inner Classes - Example
	Anonymous Inner Classes
	Anonymous Inner Classes (cont.)
	Locales
	Locales (cont.)
	Formatting Numbers
	Formatting Numbers (cont.)
	GUI
	Simple GUI Application
	Simple GUI Application (cont.)
	Simple GUI Application (cont.)
	Layout Management
	Layout Management (cont.)
	Events and Event Listeners
	Example - Counter
	Example - Counter (cont.)
	Example - Counter (cont.)
	Example - Counter (cont.)
	Example - Counter (cont.)
	Components
	Components (cont.)
	Components (cont.)
	Containers
	Top-Level Containers
	Important Classes from emph {java.awt}
	The lstinline {JComponent} Class
	The lstinline {JComponent} Class (cont.)
	The lstinline {JComponent} Class (cont.)
	The lstinline {JComponent} Class (cont.)
	Events and Event Listeners
	Adapter Classes
	Graphics Programming
	Painting
	The lstinline {Graphics} Object
	Painting Example
	Painting Example (cont.)
	Look and Feel
	Look And Feel (cont.)
	Look And Feel (cont.)
	Using Menus
	Using Menus (cont.)
	Using Menus (cont.)
	Using Menus (cont.)
	Handling Key Events
	Icons
	Simple Dialogs
	Simple Dialogs (cont.)
	Simple Dialogs (cont.)
	Timers

