More practice, CSV and memory
allocation

+

Schedule
= Sets Iintersection

" memory allocation
= CSV file handling
= structures (struct)

souce files:

actors*.csv
CSV-read-write-append-actors.cpp

B
Sets intersection (desctiption)

Read set A containg N elements, and
set B containing M elements of
integers, then evaluate their
intersection. Handle possible errors:
- multiple ocassion of one element

- hon integer value of a element

Sets intersection (notes)

memory allocation for a set A with N
elements
Int *arrayA = new Int[N];

check validity of a new element

bool isInSet(int item, int arry[], int size){
eveluate the intersection concurrently
as you read the set B
take a care for correct output:

{} versus {, }
(use logical variable: , hodnota)

Cosine Measure of Similarity

N elements of vector, double data type
double *vctrl = new double[N];

// read & check possible wrong input

// do the same for vctr2

the proper allocaded memory return is
checked by Progtest

/] delete [] vctrl;

// any time, even in the wrong entry

/] then evaluate cosine similarity

/] perfect: write functions for |x|, |y], |X * Y|

/] real programmer:

// ...but one loop could evaluate

// all three expressions as well :-)

CSV file open (read from)

open
string name = "actors.csv";
ifstream i1F(name.c_str());
1f (i1F == NULL) {
cout << "CSV file open error" << endl;
return -1;

h
loop (read all entry/rows)
Actor actor;
while (!'iF.eof()) {
readActor (i1F, actor);
writeActor(cout, actor);

}

1F.close();

‘f?

CSV file read (from) structure

Cteni

bool readActor(ifstream &fromStream,

Actor &a) {

.name, ',"');
.surname, ',"');
.born, ',"');
.address, '
.eye, ', ');
.hair, '\n');

getline(fromStream,
getline(fromStream,
getline(fromStream,
getline(fromStream,
getline(fromStream,
getline(fromStream,

pripadné oddeélovac: ';'

DO O DYDY D

y)

‘f?

CSV file write (into)

write a structure into CSV
bool writeActorToCSV(ofstream &toStream,
Actor a) {
toStream << a.name << ", "
<< a.surname << ", "
<< a.born << ", "
<< a.address << ", "
<< a.eyb’ 1 << II’ 1
<< a.hair << endl;

v

CSV file open (write into+app mode)

open (+ append)
ofstream oF;
oF.open(name.c_str(), ios::app);
1f (oF == NULL) {
cout << "CSV file open error" << endl;
return -1;

}

‘f?

CSV file write (into)

(function) write
bool writeActorToCSV(ofstream &toStream,
Actor a) {
toStream << a.name << ",
<< a.surname << ", "

<< a.born << ", " << a.address
<< II, 1 << a.eye << II, 1
<< a.hair << endl;
return true;

h

// ...function call:
Actor actor;
writeActorToCSV(oF, newA);

oF.close();

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

