Dr. Donald Davendra Ph.D.

Department of Computing Science, FEI VSB-TU Ostrava

Dr. Donald Davendra Ph.D. (Department of Structures 1/18

Derived and Structured Data Types

basic data type - part of the standard language,
preprocessor - without parameters, usees macros rather choose constants
derived data types
typedef <type definition> <identifier>;
own definition of the data type of structured data types
struct and union
and their own structure definition.

Dr. Donald Davendra Ph.D. (Department of Structures 2 /18

Derived and structred data types

declaration importance

typ name; typ,

typ namel[]; array of typ,

typ name[3]; array (fixed size) of three items of type typ
(name [0], name[1], name [2]),

typ *name; pointer of typ,

typ *name[]; (open) array of pointers to type typ,

typ *(name([]); (open) array of pointers to type typ,

typ (*name) []; a pointer to the (open) type field type typ,

typ name(); function returning a value of type typ,

typ *name() ; function returns a pointer to a value of type typ,

typ *(name()); function returns a pointer to a value of type typ,

typ (*name) () ; pointer to function returning typ.

Dr. Donald Davendra Ph.D. (Department of Structures 3/18

General procedure - from the inside out. The procedure for the correct
interpretation of the definition:

@ start with the right ID and look for round or square brackets (if any);
@ interpret these two brackets on the left and look for the asterisk;

@ if we encounter a right parenthesis (at any level of nesting), let us

return and apply the rules one and two for everything between the
parentheses;

@ apply the type specification.

Dr. Donald Davendra Ph.D. (Department of Structures 4 /18

Example of a more complex type design

char *(*(*var) ()) [10];
7 6 4 21 3 5
@ identifier is declared as var
pointer
function, which returns
pointer
array of ten elements, which are

pointers to

values of type char.

Dr. Donald Davendra Ph.D. (Department of Structures 5/18

Example of a more complex type design 2

unsigned int *(*const *name[5][10]) (void);
The identifier name is a two-dimensional array by a total of fifty elements.
The elements of this array are pointers to the parameters that are
constant. These constant indicators show the type of function that has
pointer arguments and returns a value of type unsigned int.

double (*var (double (*)[3])) [3]
The function returns a pointer to an array of three values of type double.
The argument, as well as the return value is a pointer to an array of three
elements of type double.
The argument of the function is a construct called abstract declaration.
Generally it is a declaration without an identifier. To simplify and clarify
the use of abstract declarations use typedef structure.

Dr. Donald Davendra Ph.D. (Department of Structures 6 /18

declaration importance

int * pointer to type int,

int *[3] array of three pointers to int,

int (%) [5] pointer to an array of five elements of type inf

int *() fce without specifying arg. returning uk. int,

int (%) (void) uk. the destitute fci arguments returning int,

int (*comnst []) uk. for an unspecified number of constant
passed to the function

(unsigned int, ...) | each of which has a first argument in

unsigned int and an unspecified number
of additional arguments.

Dr. Donald Davendra Ph.D. (Department of Structures 7 /18

Allows you to define an enum constants.
enum [tag] enum-list [declarator];
© enum is a keyword initiating definition of values enumerated type;

@ tag is optional "tag”, used mainly in the style of K & R C, with a
structure typedef frequency of its use is declining;

© enum-list is a list of constants enumerated type with possible
explicitly assigned value, see example below, otherwise it becomes the
first enum constant value of zero, the second value one,... Each
successor has a value one greater than its predecessor;

@ declarator is optional list of variables of type enum.

Dr. Donald Davendra Ph.D. (Department of Structures 8 /18

enumerator

typedef enum {
Back = 8, Tab = 9, Esc = 27, Enter = 13,
Down = 0x0150, Left = 0x014b, Right = 0x014d,
Up = 0x0148, NUL = 0x0103, Shift_.Tab = 0x010f,
Del = 0x0153, End = 0x014f, Home = 0x0147,
Ins = 0x0152, PgDhn = 0x0151, PgUp = 0x0149

} key_t;

int key;

else if ((key = Left) || (key = Back))
else if (key = Enter)
else if (key = Esc)

else if

Dr. Donald Davendra Ph.D. (Department of Structures 9 /18

struct [<struct—type—name>] {
[<type> <variable —name[, variable—name, ...]>] ;
[<type> <variable —name[, variable —name, ...]>] ;
} [<structure variables >] ;

. dot operator - selector of the memebre of the struct (static)
-> - selector of struct members using pointer declarations

Dr. Donald Davendra Ph.D. (Department of Structures 10 / 18

Struct example

typedef
struct {float re, im;} complex;

complex cislo ,
im_jednotka = {0, 1};

cislo.re = 12.3456;

cislo.im = —987.654;

printf("re = %10.5f im = %10.5f\n",
im_jednotka.re, im_jednotka.im);

printf("re = %10.5f im = %10.5f\n",
cislo.re, cislo.im);

Dr. Donald Davendra Ph.D. (Department of Structures 11 /18

typedef
struct {int ev_cislo;
char nazev[ZNAKUNAZEV + 1];
int na_sklade;
float cena;
} vyrobek;
typedef vyrobek zbozi[POLOZEK_ZBOZI];

1

vyrobek a = {8765, "nazev zbozi na sklade",
100, 123.99};
vyrobek xppolozky;

ppolozky—>ev_cislo = 1;

Dr. Donald Davendra Ph.D. (Department of Structures 12 /18

polozky [0]. ev_cislo = 0;

strcpy (polozky [0]. nazev, "polozka cislo 0");
polozky [0]. na_sklade = 20;

polozky [0].cena = 45.15;

ppolozky = polozky + 1;

ppolozky—>ev_cislo = 1; /* (xppolozky).ev_cislo = 1;%/
strcpy (ppolozky—>nazev, "polozka cislo 1");
ppolozky—>na_sklade = 123;

ppolozky—>cena = 9945.15;

printf (FORMAT.VYROBEK, a.ev_cislo, a.na_sklade, a.cena, a.nazev);

printf (FORMAT.VYROBEK, polozky [0].ev_cislo, polozky[0]. na_sklade ,
polozky [0].cena, polozky [0].nazev);

printf (FORMAT.VYROBEK, ppolozky—>ev_cislo, ppolozky—>na_sklade ,
ppolozky—>cena, ppolozky—>nazev);

Donald Davendra Ph.D. (Department of Structures

13 / 18

re = 0.00000 im = 1.00000

re = 12.34560 im = —987.65399
cislo: 8765 pocet: 100 cena: 123.99 nazev:nazev zbozi

cislo: 0 pocet: 20 cena: 45.15 nazev:polozka

na sklade
cislo: 1 pocet: 123 cena: 9945.15

cislo 0
nazev:polozka cislo 1

Donald Davendra Ph.D. (Department of Structures

14 / 18

Structure of FILE

Type FILE, defined in stdio.h header file is:

typedef struct {

short level ;
unsigned flags;
char fd;
unsigned char hold;
short bsize;
unsigned char xbuffer, xcurp;
unsigned istemp;
short token;

} FILE;

Dr. Donald Davendra Ph.D. (Department of Structures

Incomplete structures declaration

struct A; /* neuplna x/
struct B {struct A xpa};
struct A {struct B xpb};

the solution is made possible by the pointer whose its size is known.

Dr. Donald Davendra Ph.D. (Department of Structures 16 / 18

union [<union type name>] {
<type> <variable names> ;

} [<union variables >] ;

Syntax as a struct.

Semantics (!) - Union of the items can be used at any one time only once.
Implementation: memory space, reserved for the union is so large to
accommodate a single (largest memory item).

It is up to the programmer who is working with the union element to ensure that

it is designed properly.

Dr. Donald Davendra Ph.D. (Department of Structures 17 / 18

Bit Field

Bit field is an integer, placed in the specified number of bits. These bits
form a contiguous area of memory. Bit field can contain multiple integer
entries. We can create a bit array of three classes:

Q free bit field
@ signed bit field,
© unsigned bit field.

Bit fields can be declared only as members of the struct or union. An
expression that we write for an item identifier and the colon represents the
field size in bits.

Dr. Donald Davendra Ph.D. (Department of Structures 18 / 18

Struktura ftime detailné.

struct ftime {

unsigned ft_tsec 5; /x Two seconds x/
unsigned ft_min 6; /+* Minutes %/
unsigned ft_hour 5; /x Hours */
unsigned ft_day : 5, /+ Days */
unsigned ft_month 4; /x Months */
unsigned ft_year 7; /x Year — 1980 x/

5 |4 |13 |12 |11 (10 |9 8 7 6 5 4 3 2 1 0
ff har ft min ff sc
hodiry ity sehamdhy2

31 |30 |22 |28 |27 | |25 |24 |28 |2 |21 (20|19 |18 |17 |16

f ver 1t nofh ft day
rdc- 1980 msic dm

Petr Saloun (katedra informatiky FEI VSB-TI Odvozené a strukturované typy dat 14. listopadu 2011 19 /20

